948 resultados para gas heating
Resumo:
Projecte de recerca elaborat a partir d’una estada a la universitat d'Udine, Itàlia, entre setembre i desembre del 2006.S'han caracteritzat mitjançant la reducció a temperatura programada i tests catalítics catalitzadors en pols basats en cobalt i supostats en òxid de zinc i monòlits ceràmics funcionaliltzats també amb cobalt i òxid de zinc. L'addició de promotors (manganès, crom i ferro ) als catalitzadors en pols, preparats per impregnació i precipitació, no afecta significativament ni la temperatura a la qual té lloc la reducció ni al percentatge global de reducció. En els cicles de reducció-oxidació sí que s'observen diferències entre el primer perfil de reducció i els següents, especialment en el cas de la mostra que té ferro com a promotor, on les diferències s'accentuen en cicles successius (fins al quart). S'ha evaluat l'activitat d'aquests catalitzadors en la reacció de desplaçament de gas d'aigua, obtenint uns resultats satisfactoris. Finalment s'han realitzat reduccions a temperatura programada i tests catalítics en la reacció de desplaçament de gas d'aigua amb monòlits funcionalitzats amb cobalt i òxid de zinc (en cap d'ells s'ha introduït promotors). El nivell de conversió assolit és menor que en el cas de catalitzadors en pols, fet que s'associa a la geometria d'aquests sistemes catalítics, però la relació CH4/CO2 és més favorable que en els catalitzadors en pols, el que els converteix en sistemes molt selectius.
Resumo:
Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.
Resumo:
A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by (13)CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ((13)CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH(13)CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.
Resumo:
BACKGROUND: Dissection during laparoscopic surgery produces smoke containing potentially toxic substances. The aim of the present study was to analyze smoke samples produced during laparoscopic colon surgery using a bipolar vessel sealing device (LigaSuretrade mark). METHODS: Four consecutive patients undergoing left-sided colectomy were enrolled in this pilot study. Smoke was produced by the use of LigaSuretrade mark. Samples (5,5l) were evacuated from the pneumoperitoneum in a closed system into a reservoir. Analysis was performed with CO2-laser-based photoacoustic spectroscopy and confirmed by a Fourier-transform infrared spectrum. The detected spectra were compared to the available spectra of known toxins. RESULTS: Samples from four laparoscopic sigmoid resections were analyzed. No relevant differences were noted regarding patient and operation characteristics. The gas samples were stable over time proven by congruent control measurements as late as 24 h after sampling. The absorption spectra differed considerably between the patients. One broad absorption line at 100 ppm indicating H2O and several unknown molecules were detected. With a sensitivity of alpha min ca 10-5 cm-1 no known toxic substances like phenol or indole were identified. CONCLUSION: The use of a vessel sealing device during laparoscopic surgery does not produce known toxic substances in relevant quantity. Further studies are needed to identify unknown molecules and to analyze gas emission under various conditions.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
A gas chromatography-mass spectrometry (GC-MS) method is presented which allows the simultaneous determination of the plasma concentrations of the levo-alpha-acetylmethadol (LAAM) and of its active metabolites (NorLAAM and DiNorLAAM), after derivatization with the reagent trifluoroacetic anhydride (TFAA). No interferences from endogenous compounds were observed following the extraction of plasma samples from 11 different human subjects. The standard curves were linear over a working range of 5-200ng/ml for the three compounds. Recoveries measured at three concentrations ranged from 47 to 67% for LAAM, from 50 to 69% for NorLAAM and from 28 to 50% for DiNorLAAM. Intra- and interday coefficients of variation determined at three concentrations ranged from 5 to 13% for LAAM, from 3 to 9% for NorLAAM and from 5 to 13% for DiNorLAAM. The limits of quantitation of the method were found to be 4ng/ml for the three compounds. No interference was noted from methadone. This sensitive and specific analytical method could be useful for assessing the in vivo relationship between LAAM's blood levels, clinical efficacy and/or cardiotoxicity
Resumo:
RESUME Les changements locaux de la température à la surface de la peau humaine ont une influence importante sur sa perfusion. La chaleur augmente localement le flux sanguin cutané, mais les mécanismes et les médiateurs de cette réponse (réponse thermique d'hyperémie) sont incomplètement élucidés. Dans la présente étude, nous avons examiné la relation possible entre la réponse thermique d'hyperémie, les récepteurs cholinergiques muscariniques et la production des prostaglandines vasodilatatrices. Chez 13 sujets de sexe masculin en bonne santé âgés entre 20 et 30 ans, une chambre métallique (contenant de l'eau) dont la température peut être contrôlée, a été placée sur la face palmaire de leur avant-bras et utilisée pour augmenter la température de surface de 34 à 41°C. L'hyperémie cutanée consécutive a été enregistrée par l'intermédiaire d'un scanner laser-Doppler. Dans une expérience, chacun des 8 sujets a reçu un bolus i.v. de glycopyrolate (agent antimuscarinique) (4 µg/kg) lors d'une visite et de NaCl 0,9% lors de l'autre visite. La réponse thermique d'hyperémie a été déterminée dans l'heure suivant les injections. Les glycopyrolate a efficacement empêché la vasodilation des micro-vaisseaux cutanés induite par iontophorèse d'acétylcholine mais n'a pas influencé la réponse thermique d'hyperémie. Dans une deuxième expérience entreprise avec 5 autres sujets 1 g d'aspirine (inhibiteur de la cyclooxygénase) administrée oralement a totalement supprimé la vasodilatation induite dans la peau par le courant anodique, sans modifier la réponse thermique d'hyperémie. La présente étude confirme l'absence de stimulation des récepteurs muscariniques et la production de prostaglandines vaso-dilatatrices dans la vasodilatation induite chez l'homme par réchauffement local de la peau de l'avant-bras. ABSTRACT Local changes in surface temperature have a powerful influence on the perfusion of human skin. Heating increases local skin blood flow (SkBF), but the mechanisms and mediators of this response (thermal hyperemia response) are incompletely elucidated. In the present study, we examined the possible dependence of the thermal hyperemia response on stimulation of muscarinic cholinergic receptors and on production of vasodilator prostanoids. In 13 male healthy subjects aged 20 - 30 years, a temperature- controlled chamber was positioned on the volar face of one forearm and used to raise surface temperature from 34to41°C. The time-course of the resulting thermal hyperemia response was recorded with a laser-Doppler imager. In one experiment, each of 8 subjects received an i.v. bolus of the antimuscarinic agent glycopyrrolate (4µg/kg) on one visit and saline on the other. The thermal hyperemia response was determined within the hour following the injections. Glycopyrrolate effectively inhibited the skin vasodilation induced by iontophoresis of acetylcholine, but did not influence the thermal hyperemia response. In a second experiment conducted in 5 other subjects, 1 gram of the cyclooxygenase inhibitor aspirin administered orally totally abolished the vasodilation induced in the skin by anodal current, but also failed to modify the thermal hyperemia response. The present study excludes the stimulation of muscarinic receptors and the production of vasodilator prostaglandins as essential and nonredundant mechanisms for the vasodilation induced by local heating in human forearm skin.
Resumo:
BACKGROUND: Intraocular gas bubbles expand as patients move up to higher altitude. This may cause an acute intraocular pressure (IOP) rise with associated vascular obstructions and visual loss. MATERIALS AND METHODS: Two pseudophakic patients underwent a pars plana vitrectomy and 23% SF6 gas tamponade for a pseudophakic retinal detachment. During the immediate post-operative phase, the patients travelled daily up to their domicile, which was situated approximately 600 m higher than the level where they had been operated on. These travels were always without any pain or visual loss. However 1 week after surgery both patients developed severe ocular pain, and one patient had complete temporary loss of vision after ascending to altitude levels, which had previously presented no problem. Both episodes occurred in parallel with a change in barometric pressure. RESULTS: Treatment with acetazolamide reduced the increased IOP to normal levels, and visual acuity recovered. CONCLUSIONS: Although the post-operative size of an intraocular gas bubble decreases progressively over time, problems with bubble expansion may still occur even at a late stage if meteorological factors, that may increase the bubble size, change.
Resumo:
Cuticular hydrocarbons of larvae of individual strains of the Anopheles gambiae sensu stricto were investigated using gas liquid chromatography. Biomedical discriminant analysis involving multivariate statistics suggests that there was clear hydrocarbon difference between the Gambian(G3), the Nigerian (16CSS and, its malathion resistant substrain, REFMA) and the Tanzanian (KWA) strains. The high degree of segregation (95%) in hydrocarbons among the four strains investigated indicates that further analysis is needed to enable understanding of hydrocarbon variation in samples of An. gambiae especially from areas where these populations co-exist.
Resumo:
Whereas during the last few years handling of the transcutaneous PO2 (tcPO2) and PCO2 (tcPCO2) sensor has been simplified, the high electrode temperature and the short application time remain major drawbacks. In order to determine whether the application of a topical metabolic inhibitor allows reliable measurement at a sensor temperature of 42 degrees C for a period of up to 12 h, we performed a prospective, open, nonrandomized study in a sequential sample of 20 critically ill neonates. A total of 120 comparisons (six repeated measurements per patient) between arterial and transcutaneous values were obtained. Transcutaneous values were measured with a control sensor at 44 degrees C (conventional contact medium, average application time 3 h) and a test sensor at 42 degrees C (Eugenol solution, average application time 8 h). Comparison of tcPO2 and PaO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.16 kPa (range +1.60 to -2.00 kPa), limits of agreement +1.88 and -1.56 kPa. Comparison of tcPO2 and PaO2 at 44 degrees C (control sensor) revealed a mean difference of +0.02 kPa (range +2.60 to -1.90 kPa), limits of agreement +2.12 and -2.08 kPa. Comparison of tcPCO2 and PaCO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.91 (range +2.30 to +0.10 kPa), limits of agreement +2.24 and -0.42 kPa. Comparison of tcPCO2 and PaCO2 at 44 degrees C (control sensor) revealed a mean difference of +0.63 kPa (range 1.50 to -0.30 kPa), limits of agreement +1.73 and -0.47 kPa. CONCLUSION: Our results show that the use of an Eugenol solution allows reliable measurement of tcPO2 at a heating temperature of 42 degrees C; the application time can be prolongued up to a maximum of 12 h without aggravating the skin lesions. The performance of the tcPCO2 monitor was slightly worse at 42 degrees C than at 44 degrees C suggesting that for the Eugenol solution the metabolic offset should be corrected.
Resumo:
The in situ nuclear matrix was obtained from HeLa cells. After permeabilization with nonionic detergent, the resulting structures were incubated for 1 h at 37 degrees C to determine whether or not such an incubation might result in the redistribution of nuclear polypeptides which resisted extraction with buffers of high-ionic strength (1.6 M NaCl or 0.25 M (NH4)2SO4 as well as DNase I digestion. Using indirect immunofluorescence experiments and monoclonal antibodies we show that heating to 37 degrees C changes the distribution of a 160 kDa protein previously shown to be a component of the inner matrix network. On the other hand, a 125 kDa polypeptide was not affected at all by the incubation. Our results clearly indicate that the inclusion of a 37 degrees C incubation (for example during digestion with DNase I) in the protocol to obtain the in situ nuclear matrix can result in the formation of in vitro artifacts.