984 resultados para gallic acid alkyl esters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 mu M, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to induce apoptosis is an important marker for cytotoxic antitumor agents. Some natural compounds have been shown to modulate apoptosis pathways that are frequently blocked in human cancers, and therefore, these compounds provide novel opportunities for cancer drug development. Phyllanthus, a plant genus of the family Euphorbiaceae, exhibits multiple pharmacological actions. Of these, Phyllanthus niruri extracts exhibit significant antitumor activity, which is consistent with the traditional medicinal use of this plant. To examine the apoptotic effects of a spray-dried extract of P. niruri (SDEPN), human hepatocellular carcinoma cells (HepG2, Huh-7), colorectal carcinoma cells (Ht29) and keratinocytes (HaCaT) were exposed to the extract for 4, 8 and 24 h. Flow cytometry and caspase-3 immunostaining were used to detect apoptosis, while analysis of variance was applied to identify significant differences between groups (P < 0.05). At all timepoints, the SDEPN induced significantly different cytotoxic effects for HepG2 and Huh-7 cells compared with control cells (P < 0.001). In contrast, the SDEPN had a protective effect on HaCaT cells compared with control cells at all timepoints (P < 0.001). In caspase-3 assays, activation was detected after cell death was induced in Huh-7 and HepG2 cancer cells by the SDEPN. In combination, these results indicate that the SDEPN is selectively toxic towards cancer cell lines, yet is protective towards normal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2% recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40 degrees C and 5.0, respectively. The enzyme was fully stable from 40 degrees C to 60 degrees C during 1 hr. The activity was enhanced by Mn2+ (33-39%) and NH4+ (15%). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC50 = 10.8 mu g/ml), in combination of A. leiocarpus with Khaya senegalensis (IC50 = 12.5 mu g/ml), ellagic acid (IC50 = 2.88 mu M), and geraniin (IC50 = 11.74 mu M). In general growth inhibition was concentration-dependent revealing IC50 values ranging between 10.8 and -40.1 mu g/ml and 2.88 and 11.74 mu M for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC50 values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amalgamersatz:Neue Wege zur Herstellung von Dentalkompositen mit geringem Polymerisationsschrumpf auf (Meth-)Acrylat-Basis Aufgrund der ästhetischen und gesundheitlichen Bedenken wird seit Jahrzehnten nach einer Alternative für Amalgam als Zahnfüllmaterial gesucht. Der größte Nachteil von organischen Monomeren liegt in der Volumenkontraktion während der Aushärtung, welche sich negativ auf die Materialeigenschaften auswirkt. Aus diesem Grund war das Hauptziel dieser Arbeit, eine Minimierung des Schrumpfes bei der radikalischen Polymerisation zu erreichen. Dazu wurden verschiedene, zum Teil neue, (Meth-)Acrylate synthetisiert und auf ihre Einsetzbarkeit als Bestandteil von Dentalkompositen geprüft.Um die Volumenkontraktion während der Polymerisation zu minimieren, wurde die Beweglichkeit der polymerisierbaren Gruppe eingeschränkt. Im ersten Teil der Arbeit wurden dazu flüssigkristalline Substanzen eingesetzt. Durch Mischen von flüssigkristallinen Diacrylaten konnte eine Mesophase im gewünschten Temperaturintervall von 25 bis 35 °C erhalten werden. Der Einsatz dieser Flüssigkristalle zeigte einen positiven Einfluss auf den Polymerisationsschrumpf. Zudem wurden neue Monomere synthetisiert, deren Methacrylgruppe in direkter Nachbarschaft zum Mesogen angebunden wurde, um die Stabilität der erhaltenen Polymere zu erhöhen.Im zweiten Teil der Arbeit wurde die Beweglichkeit der polymerisierbaren Gruppe durch eine Fixierung an einem starren Kern reduziert. Als Grundkörper wurden Polyphenole, enzymatisch polymerisierte Phenole und ߖCyclodextrin verwendet. Bei den modifizierten Polyphenolen auf Basis von Gallussäure und 3,5-Dihydroxybenzoesäure konnte eine leichte Reduzierung des Polymerisationsschrumpfes erreicht werden. Mit HRP (Horseradish Peroxidase) katalysierten enzymatisch polymerisierten Phenole konnte dagegen nicht photochemisch vernetzt werden, da diese Oligomere in Lösung gefärbt vorlagen. Zudem zeigten die freien, phenolischen Hydroxygruppen eine sehr geringe Reaktivität. Die besten Ergebnisse wurden mit modifizierten ߖCyclodextrinen als Komponente einer Komposite erreicht. Dabei wurde in einem Fall sogar eine leichte Volumenexpansion während der Polymerisation erzielt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present thesis, carried out at the Analytical Group of the Faculty of Industrial Chemistry in Bologna, is to develop a new electrochemical method for the determination of the Antioxidant Capacity (AOC). The approach is based on the deposition of a non-conducting polymeric film on the working electrode surface and the following exposition to the radicals OH· produced by H2O2 photolysis. The strongly oxidant action of hydroxyl radicals degrades, causing an increase of the Faradic current, relevant to the redox couple [Ru(NH3)6]2+/3+ monitored by cyclic voltammetry(CV); the presence of an antioxidant compound in solution slows down the radical action, thus protecting the polymeric film and blocking the charge transfer. The parameter adopted for the quantification of the AOC, was the induction time, called also lag phase, which is the time when the degradation of the film starts. Five pure compounds, among most commonly antioxidant, were investigated : Trolox®(an analogue water-soluble of vitamin E), (L)-ascorbic acid, gallic acid, pyrogallol and (-)- epicatechin. The AOC of each antioxidant was expressed by TEAC index (Trolox® Equivalent Antioxidant Capacity), calculated from the ratio between the slope of the calibration curve of the target compound and the slope of the calibration curve of Trolox®. The results from the electrochemical method, have been compared with those obtained from some other standardized methods, widely employed. The assays used for the comparison, have been: ORAC, a spectrofluorimetric method based on the decrease of fluorescein emission after the attack of alkylperoxide radicals, ABTS and DPPH that exploit the decoloration of stable nitrogen radicals when they are reduced in presence of an antioxidant compound and, finally, a potentiometric method based on the response of the redox couple [Fe(CN)6]3-/ [Fe(CN)6]4-. From the results obtained from pure compounds, it has been found that ORAC is the methodology showing the best correlation with the developed electrochemical method, maybe since similar radical species are involved. The comparison between the considered assays, was also extended to the analysis of a real sample of fruit juice. In such a case the TEAC value resulting from the electrochemical method is higher than those from standardized assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Alcohol-related disorders are common, expensive in their course, and often underdiagnosed. To facilitate early diagnosis and therapy of alcohol-related disorders and to prevent later complications, questionnaires and biomarkers are useful. METHODS Indirect state markers like gamma-glutamyl-transpeptidase, mean corpuscular volume, and carbohydrate deficient transferrin are influenced by age, gender, various substances, and nonalcohol-related illnesses, and do not cover the entire timeline for alcohol consumption. Ethanol (EtOH) metabolites, such as ethyl glucuronide, ethyl sulfate, phosphatidylethanol, and fatty acid ethyl esters have gained enormous interest in the last decades as they are detectable after EtOH intake. RESULTS For each biomarker, pharmacological characteristics, detection methods in different body tissues, sensitivity/specificity values, cutoff values, time frames of detection, and general limitations are presented. Another focus of the review is the use of the markers in special clinical and forensic samples. CONCLUSIONS Depending on the biological material used for analysis, ethanol metabolites can be applied in different settings such as assessment of alcohol intake, screening, prevention, diagnosis, and therapy of alcohol use disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ?87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.