977 resultados para fluorescence microscopy
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
During the last few years, a great deal of interest has risen concerning the applications of stochastic methods to several biochemical and biological phenomena. Phenomena like gene expression, cellular memory, bet-hedging strategy in bacterial growth and many others, cannot be described by continuous stochastic models due to their intrinsic discreteness and randomness. In this thesis I have used the Chemical Master Equation (CME) technique to modelize some feedback cycles and analyzing their properties, including experimental data. In the first part of this work, the effect of stochastic stability is discussed on a toy model of the genetic switch that triggers the cellular division, which malfunctioning is known to be one of the hallmarks of cancer. The second system I have worked on is the so-called futile cycle, a closed cycle of two enzymatic reactions that adds and removes a chemical compound, called phosphate group, to a specific substrate. I have thus investigated how adding noise to the enzyme (that is usually in the order of few hundred molecules) modifies the probability of observing a specific number of phosphorylated substrate molecules, and confirmed theoretical predictions with numerical simulations. In the third part the results of the study of a chain of multiple phosphorylation-dephosphorylation cycles will be presented. We will discuss an approximation method for the exact solution in the bidimensional case and the relationship that this method has with the thermodynamic properties of the system, which is an open system far from equilibrium.In the last section the agreement between the theoretical prediction of the total protein quantity in a mouse cells population and the observed quantity will be shown, measured via fluorescence microscopy.
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.
Resumo:
Im ersten Teil der Arbeit wurde das Bindungsverhalten von Annexin A1 und Annexin A2t an festkörperunterstützte Lipidmembranen aus POPC und POPS untersucht. Für beide Proteine konnte mit Hilfe der Fluoreszenzmikroskopie gezeigt werden, dass irreversible Bindung nur in Anwesenheit von POPS auftritt. Durch rasterkraftmikroskopische Aufnahmen konnte die laterale Organisation der Annexine auf der Lipidmembran dargestellt werden. Beide Proteine lagern sich in Form lateraler Aggregate (zweidimensionale Domänen) auf der Oberfläche an, außerdem ist der Belegungsgrad und die Größe der Domänen von der Membranzusammensetzung und der Calciumkonzentration abhängig. Mit zunehmendem POPS-Gehalt und Calciumkonzentration steigt der Belegungsgrad an und der mittlere Domänenradius wird kleiner. Diese Ergebnisse konnten in Verbindung mit detaillierten Bindungsstudien des Annexins A1 mit der Quarzmikrowaage verwendet werden, um ein Bindungsmodell auf Basis einer heterogenen Oberfläche zu entwickeln. Auf einer POPC-reichen Matrix findet reversible Adsorption statt und auf POPS-reichen Domänen irreversible Adsorption. Durch die Anpassung von dynamischen Monte Carlo-Simulationen basierend auf einer zweidimensionalen zufälligen sequentiellen Adsorption konnten Erkenntnisse über die Membranstruktur und die kinetischen Ratenkonstanten in Abhängigkeit von der Calciumkonzentration und der Inkubationszeit des Proteins gewonnen werden. Die irreversible Bindung ist in allen Calciumkonzentrationsbereichen schneller als die reversible. Außerdem zeigt die irreversible Adsorption eine deutlich stärkere Abhängigkeit von der Calciumkonzentration. Ein kleinerer Belegungsgrad bei niedrigen Ca2+-Gehalten ist hauptsächlich durch die Abnahme der verfügbaren Bindungsplätze auf der Oberfläche zu erklären. Die gute Übereinstimmung der aus den Monte Carlo-Simulationen erhaltenen Domänenstrukturen mit den rasterkraftmikroskopischen Aufnahmen und die Tatsache, dass sich die simulierten Resonanzfrequenzverläufe problemlos an die experimentellen Kurven aus den QCM-Messungen anpassen ließen, zeigt die gute Anwendbarkeit des entwickelten Simulationsprogramms auf die Adsorption von Annexin A1. Die Extraktion der kinetischen Parameter aus dem zweidimensionalen RSA-Modell ist mit Sicherheit einem einfachen Langmuir-Ansatz überlegen. Bei einem Langmuir-Modell erfolgt eine integrale Erfassung einer einzelnen makroskopischen Geschwindigkeitskonstante, während durch das RSA-Modell eine differenzierte Betrachtung des reversiblen und irreversiblen Bindungsprozesses möglich ist. Zusätzlich lassen sich mikroskopische Informationen über die Oberflächenbeschaffenheit gewinnen. Im zweiten Teil der Arbeit wurde das thermotrope Phasenverhalten von festkörperunterstützten Phospholipidbilayern untersucht. Dazu wurden mikrostrukturierte, frei stehende Membranstreifen präpariert und mit Hilfe der bildgebenden Ellipsometrie untersucht. Dadurch konnten die temperaturabhängigen Verläufe der Schichtdicke und der lateralen Membranausdehnung parallel beobachtet werden. Die ermittelten Phasenübergangstemperaturen von DMPC, diC15PC und DPPC lagen 2 - 3 °C oberhalb der Literaturwerte für vesikuläre Systeme. Außerdem wurde eine deutliche Verringerung der Kooperativität der Phasenumwandlung gefunden, was auf einen großen Einfluss des Substrats bei den festkörperunterstützten Lipidmembranen schließen lässt. Zusätzlich wurde ein nicht systematischer Zusammenhang der Ergebnisse von der Oberflächenpräparation gefunden, der es unabdingbar macht, bei Untersuchungen von festkörperunterstützten Substraten einen internen Standard einzuführen. Bei der Analyse des thermotropen Phasenübergangsverhaltens von DMPC/Cholesterol - Gemischen wurde daher die individuelle Adressierbarkeit der strukturierten Lipidmembranen ausgenutzt und ein Lipidstreifen aus reinem DMPC als Standard verwendet. Auf diese Weise konnte gezeigt werden, dass das für Phospholipide typische Phasenübergangsverhalten ab 30 mol% Cholesterol in der Membran nicht mehr vorhanden ist. Dies ist auf die Bildung einer nur durch höhere Sterole induzierten fluiden Phase mit hoch geordneten Acylketten zurückzuführen. Abschließend konnte durch die Zugabe von Ethanol zu einer mikrostrukturierten DMPC-Membran die Bildung eines interdigitierten Bilayers nachgewiesen werden. Die bildgebende Ellipsometrie ist eine sehr gute Methode zur Untersuchung festkörperunterstützter Lipidmembranen, da sie über ein sehr gutes vertikales und ein ausreichendes laterales Auflösungsvermögen besitzt. Sie ist darin zwar einem Rasterkraftmikroskop noch unterlegen, besitzt dafür aber eine einfachere Handhabung beim Umgang mit Flüssigkeiten und in der Temperierung, eine schnellere Bildgebung und ist als optische Methode nicht-invasiv.
Resumo:
The development and characterization of biomolecule sensor formats based on the optical technique Surface Plasmon Resonance (SPR) Spectroscopy and electrochemical methods were investigated. The study can be divided into two parts of different scope. In the first part new novel detection schemes for labeled targets were developed on the basis of the investigations in Surface-plamon Field Enhanced Spectroscopy (SPFS). The first one is SPR fluorescence imaging formats, Surface-plamon Field Enhanced Fluorescence Microscopy (SPFM). Patterned self assembled monolayers (SAMs) were prepared and used to direct the spatial distribution of biomolecules immobilized on surfaces. Here the patterned monolayers would serve as molecular templates to secure different biomolecules to known locations on a surface. The binding processed of labeled target biomolecules from solution to sensor surface were visually and kinetically recorded by the fluorescence microscope, in which fluorescence was excited by the evanescent field of propagating plasmon surface polaritons. The second format which also originates from SPFS technique, Surface-plamon Field Enhanced Fluorescence Spectrometry (SPFSm), concerns the coupling of a fluorometry to normal SPR setup. A spectrograph mounted in place of photomultiplier or microscope can provide the information of fluorescence spectrum as well as fluorescence intensity. This study also firstly demonstrated the analytical combination of surface plasmon enhanced fluorescence detection with analyte tagged by semiconducting nano- crystals (QDs). Electrochemically addressable fabrication of DNA biosensor arrays in aqueous environment was also developed. An electrochemical method was introduced for the directed in-situ assembly of various specific oligonucleotide catcher probes onto different sensing elements of a multi-electrode array in the aqueous environment of a flow cell. Surface plasmon microscopy (SPM) is utilized for the on-line recording of the various functionalization steps. Hybridization reactions between targets from solution to the different surface-bound complementary probes are monitored by surface-plasmon field-enhanced fluorescence microscopy (SPFM) using targets that are either labeled with organic dyes or with semiconducting quantum dots for color-multiplexing. This study provides a new approach for the fabrication of (small) DNA arrays and the recording and quantitative evaluation of parallel hybridization reactions. In the second part of this work, the ideas of combining the SP optical and electrochemical characterization were extended to tethered bilayer lipid membrane (tBLM) format. Tethered bilayer lipid membranes provide a versatile model platform for the study of many membrane related processes. The thiolipids were firstly self-assembled on ultraflat gold substrates. Fusion of the monolayers with small unilamellar vesicles (SUVs) formed the distal layer and the membranes thus obtained have the sealing properties comparable to those of natural membranes. The fusion could be monitored optically by SPR as an increase in reflectivity (thickness) upon formation of the outer leaflet of the bilayer. With EIS, a drop in capacitance and a steady increase in resistance could be observed leading to a tightly sealing membrane with low leakage currents. The assembly of tBLMs and the subsequent incorporation of membrane proteins were investigated with respect to their potential use as a biosensing system. In the case of valinomycin the potassium transport mediated by the ion carrier could be shown by a decrease in resistance upon increasing potassium concentration. Potential mediation of membrane pores could be shown for the ion channel forming peptide alamethicin (Alm). It was shown that at high positive dc bias (cis negative) Alm channels stay at relatively low conductance levels and show higher permeability to potassium than to tetramethylammonium. The addition of inhibitor amiloride can partially block the Alm channels and results in increase of membrane resistance. tBLMs are robust and versatile model membrane architectures that can mimic certain properties of biological membranes. tBLMs with incorporated lipopolysaccharide (LPS) and lipid A mimicking bacteria membranes were used to probe the interactions of antibodies against LPS and to investigate the binding and incorporation of the small antimicrobial peptide V4. The influence of membrane composition and charge on the behavior of V4 was also probed. This study displays the possibility of using tBLM platform to record and valuate the efficiency or potency of numerous synthesized antimicrobial peptides as potential drug candidates.
Resumo:
A novel nanosized and addressable sensing platform based on membrane coated plasmonic particles for detection of protein adsorption using dark field scattering spectroscopy of single particles has been established. To this end, a detailed analysis of the deposition of gold nanorods on differently functionalized substrates is performed in relation to various factors (such as the pH, ionic strength, concentration of colloidal suspension, incubation time) in order to find the optimal conditions for obtaining a homogenous distribution of particles at the desired surface number density. The possibility of successfully draping lipid bilayers over the gold particles immobilized on glass substrates depends on the careful adjustment of parameters such as membrane curvature and adhesion properties and is demonstrated with complementary techniques such as phase imaging AFM, fluorescence microscopy (including FRAP) and single particle spectroscopy. The functionality and sensitivity of the proposed sensing platform is unequivocally certified by the resonance shifts of the plasmonic particles that were individually interrogated with single particle spectroscopy upon the adsorption of streptavidin to biotinylated lipid membranes. This new detection approach that employs particles as nanoscopic reporters for biomolecular interactions insures a highly localized sensitivity that offers the possibility to screen lateral inhomogeneities of native membranes. As an alternative to the 2D array of gold nanorods, short range ordered arrays of nanoholes in optically transparent gold films or regular arrays of truncated tetrahedron shaped particles are built by means of colloidal nanolithography on transparent substrates. Technical issues mainly related to the optimization of the mask deposition conditions are successfully addressed such that extended areas of homogenously nanostructured gold surfaces are achieved. Adsorption of the proteins annexin A1 and prothrombin on multicomponent lipid membranes as well as the hydrolytic activity of the phospholipase PLA2 were investigated with classical techniques such as AFM, ellipsometry and fluorescence microscopy. At first, the issues of lateral phase separation in membranes of various lipid compositions and the dependency of the domains configuration (sizes and shapes) on the membrane content are addressed. It is shown that the tendency for phase segregation of gel and fluid phase lipid mixtures is accentuated in the presence of divalent calcium ions for membranes containing anionic lipids as compared to neutral bilayers. Annexin A1 adsorbs preferentially and irreversibly on preformed phosphatidylserine (PS) enriched lipid domains but, dependent on the PS content of the bilayer, the protein itself may induce clustering of the anionic lipids into areas with high binding affinity. Corroborated evidence from AFM and fluorescence experiments confirm the hypothesis of a specifically increased hydrolytic activity of PLA2 on the highly curved regions of membranes due to a facilitated access of lipase to the cleavage sites of the lipids. The influence of the nanoscale gold surface topography on the adhesion of lipid vesicles is unambiguously demonstrated and this reveals, at least in part, an answer for the controversial question existent in the literature about the behavior of lipid vesicles interacting with bare gold substrates. The possibility of formation monolayers of lipid vesicles on chemically untreated gold substrates decorated with gold nanorods opens new perspectives for biosensing applications that involve the radiative decay engineering of the plasmonic particles.
Resumo:
The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.
Resumo:
Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.
Resumo:
In dieser Arbeit wird eine detaillierte Untersuchung und Charakterisierung der Zwei-Photonen-induzierten Fluoreszenzverstärkung von organischen Farbstoffen auf plasmonischen Nanostrukturen vorgestellt. Diese Fluoreszenzverstärkung ist insbesondere für hochaufgelöste Fluoreszenzmikroskopie und Einzelmolekülspektroskopie von großer Bedeutung. Durch die Zwei-Photonen-Anregung resultiert eine Begrenzung des Absorptionsprozesses auf das fokale Volumen. In Kombination mit dem elektrischen Nahfeld der Nanostrukturen als Anregungsquelle entsteht eine noch stärkere Verringerung des Anregungsvolumens auf eine Größe unterhalb der Beugungsgrenze. Dies erlaubt die selektive Messung ausgewählter Farbstoffe. Durch die Herstellung der Nanopartikel mittels Kolloidlithografie wird eine definierte, reproduzierbare Geometrie erhalten. Polymermultischichten dienen als Abstandshalter, um die Farbstoffe an einer exakten Distanz zum Metall zu positionieren. Durch die kovalente Anbindung des Farbstoffs an die oberste Schicht wird eine gleichmäßige Verteilung des Farbstoffs in geringer Konzentration erhalten. rnEs wird eine Verstärkung der Fluoreszenz um den Faktor 30 für Farbstoffe auf Goldellipsen detektiert, verglichen mit Farbstoffen außerhalb des Nahfelds. Sichelförmige Nanostrukturen erzeugen eine Verstärkung von 120. Dies belegt, dass das Ausmaß der Fluoreszenzverstärkung entscheidend von der Stärke des elektrischen Nahfelds der Nanostruktur abhängt. Auch das Material der Nanostruktur ist hierbei von Bedeutung. So erzeugen Silberellipsen eine 1,5-fach höhere Fluoreszenzverstärkung als identische Goldellipsen. Distanzabhängige Fluoreszenzmessungen zeigen, dass die Zwei-Photonen-angeregte Fluoreszenzverstärkung an strukturspezifischen Abständen zum Metall maximiert wird. Elliptische Strukturen zeigen ein Maximum bei einem Abstand von 8 nm zum Metall, wohingegen bei sichelförmigen Nanostrukturen die höchste Fluoreszenzintensität bei 12 nm gemessen wird. Bei kleineren Abständen unterliegt der Farbstoff einem starken Löschprozess, sogenanntes Quenching. Dieses konkurriert mit dem Verstärkungsprozess, wodurch es zu einer geringen Nettoverstärkung kommt. Hat die untersuchte Struktur Dimensionen größer als das Auflösungsvermögen des Mikroskops, ist eine direkte Visualisierung des elektrischen Nahfelds der Nanostruktur möglich. rnrnEin weiterer Fokus dieser Arbeit lag auf der Herstellung neuartiger Nanostrukturen durch kolloidlithografische Methoden. Gestapelte Dimere sichelförmiger Nanostrukturen mit exakter vertikaler Ausrichtung und einem Separationsabstand von etwa 10 nm wurden hergestellt. Die räumliche Nähe der beiden Strukturen führt zu einem Kopplungsprozess, der neue optische Resonanzen hervorruft. Diese können als Superpositionen der Plasmonenmoden der einzelnen Sicheln beschrieben werden. Ein Hybridisierungsmodell wird angewandt, um die spektralen Unterschiede zu erklären. Computersimulationen belegen die zugrunde liegende Theorie und erweitern das Modell um experimentell nicht aufgelöste Resonanzen. rnWeiterhin wird ein neuer Herstellungsprozess für sichelförmige Nanostrukturen vorgestellt, der eine präzise Formanpassung ermöglicht. Hierdurch kann die Lage der Plasmonenresonanz exakt justiert werden. Korrelationen der geometrischen Daten mit den Resonanzwellenlängen tragen zum grundlegenden Verständnis der Plasmonenresonanzen bei. Die vorgestellten Resultate wurden mittels Computersimulationen verifiziert. Der Fabrikationsprozess erlaubt die Herstellung von Dimeren sichelförmiger Nanostrukturen in einer Ebene. Durch die räumliche Nähe überlappen die elektrischen Nahfelder, wodurch es zu kopplungs-induzierten Shifts der Plasmonenresonanzen kommt. Der Unterschied zu theoretisch berechneten ungekoppelten Nanosicheln kann auch bei den gegenüberliegenden sichelförmigen Nanostrukturen mit Hilfe des Plasmonenhybridisierungsmodells erklärt werden.
Resumo:
Die effiziente Generierung von Peptid-Epitopen aus zelleigenen oder viralen Proteinen für die Präsentation auf „Major Histocompatibility Complex I“ (MHC I) Molekülen ist essentiell für die Aktivierung des adaptiven Immunsystems und die Effektorfunktion der CD8+ zytotoxischen T-Zellen (CTLs). CTLs erkennen diese Peptide in Kontext mit MHC I Molekülen über ihren spezifischen T-Zellrezeptor (TCR). Die Generierung dieser Epitope ist das Resultat eines komplexen proteolytischen Prozesses, der im Zytosol und im endoplasmatischen Retikulum (ER) stattfindet. Im Zytosol generiert das Proteasom N-terminal verlängerte Epitop-Vorläufer. Diese werden durch weitere zytosolische Proteasen abgebaut, es sei denn, sie werden durch den „transporter associated with antigen processing“ (TAP) in das ER transportiert. Dort werden sie durch Aminopeptidasen getrimmt, um den Bindungsvoraussetzungen der MHC I Moleküle zu genügen. Im murinen System ist die „ER aminopeptidase associated with antigen processing“ (ERAAP) die bislang einzige beschriebene Aminopeptidase, die dieses N-terminale Trimming von CTL Epitopen vermitteln kann. Das Profil der proteolytischen Aktivität in angereichertem murinen ER kann jedoch nicht allein durch die Aktivität von ERAAP erklärt werden, was auf die Anwesenheit weiterer Aminopeptidasen mit einer potentiellen Funktion in der Antigenprozessierung hinweist. In dieser Arbeit konnte die immunologisch bislang noch nicht beschriebene Aminopeptidase ERMP1 (endoplasmic reticulum metallopeptidase 1) im murinen ER identifiziert werden. Nach Aufreinigung muriner Mikrosomen und anschließender Anionenaustausch-Chromatographie wurden die gesammelten Fraktionen mit fluorogenen Substraten auf Aminopeptidase-Aktivität getestet. Durch massenspektrometrische Analyse konnten in den beobachteten Peaks die schon beschriebenen Aminopeptidasen ERAAP, die „insulin regulated aminopeptidase“ IRAP und die immunologisch bislang nicht beschriebene Aminopeptidase ERMP1 identifiziert werden. Durch Fluoreszenzmikroskopie konnte die intrazelluläre Lokalisation von ERMP1 im ER durch Kolokalisation mit TAP verifiziert werden. Wie viele Komponenten des MHC I Prozessierungsweges wird auch die Expression von ERMP1 durch IFN-γ stimuliert. Dies macht ERMP1 zu einer potentiellen zweiten trimmenden Aminopeptidase im murinen ER. Überexpression von ERMP1 hat einen allelspezifischen Einfluss auf die globale MHC I Präsentation auf der Zelloberfläche und durch Überexpression und shRNA vermitteltes gene silencing konnte außerdem ein epitopspezifischer Effekt nachgewiesen werden. Da N-terminales Trimming durch ERAAP mit der Evasion von Tumoren und veränderter Immundominanz assoziiert wird, ist die detaillierte Charakterisierung der Aminopeptidase ERMP1 ein wichtiger Schritt zum Verständnis der MHC I Antigen-Prozessierung und der Generierung von CTL Epitopen im ER.
Resumo:
Magnesium is an essential element for many biological processes crucial for cell life and proliferation. Growing evidences point out a role for this cation in the apoptotic process and in developing multi drug resistance (MDR) phenotype. The first part of this study aimed to highlight the involvement of the mitochondrial magnesium channel MRS2 in modulating drug-induced apoptosis. We generated an appropriate transgenic cellular system to regulate expression of MRS2 protein. The cells were then exposed to two different apoptotic agents commonly used in chemotherapy. The obtained results showed that cells overexpressing MRS2 channel are less responsiveness to pharmacological insults, looking more resistant to the induced apoptosis. Moreover, in normal condition, MRS2 overexpression induces higher magnesium uptake into isolated mitochondria respect to control cells correlating with an increment of total intracellular magnesium concentration. In the second part of this research we investigated whether magnesium intracellular content and compartmentalization could be used as a signature to discriminate MDR tumour cells from their sensitive counterparts. As MDR model we choose colon carcinoma cell line sensitive and resistant to doxorubicin. We exploited a standard-less approach providing a complete characterization of whole single-cells by combining X-Ray Fluorescence Microscopy , Atomic Force Microscopy and Scanning Transmission X-ray Microscopy. This method allows the quantification of the intracellular spatial distribution and total concentration of magnesium in whole dehydrated cells. The measurements, carried out in 27 single cells, revealed a different magnesium pattern for both concentration and distribution of the element in the two cellular strains. These results were then confirmed by quantifying the total amount of intracellular magnesium in a large populations of cells by using DCHQ5 probe and traditional fluorimetric technique.
Resumo:
Lysosomaler Transport kationischer Aminosäuren (KAS) stellt einen Rettungsweg in der Cystinose-Therapie dar. Ein solches Transportsystem wurde in humanen Hautfibroblasten beschrieben und mit System c benannt. Des Weiteren stellt lysosomales Arginin eine Substratquelle für die endotheliale NO-Synthase (eNOS) dar. Das von der eNOS gebildete NO ist ein wichtiges vasoprotektiv wirkendes Signalmolekül. Ziel war es daher, herauszufinden, ob Mitglieder der SLC7-Unterfamilie hCAT möglicherweise System c repräsentieren.rnIn dieser Arbeit konnte ich die lysosomale Lokalisation verschiedener endogener, sowie als EGFP-Fusionsproteine überexprimierter CAT-Isoformen nachweisen. Mittels Fluoreszenz-mikroskopie wurde festgestellt, dass die in U373MG-Zellen überexprimierten Fusionsproteine hCAT-1.EGFP sowie SLC7A14.EGFP mit dem lysosomalen Fluoreszenz-Farbstoff LysoTracker co-lokalisieren. Eine Lokalisation in Mitochondrien oder dem endoplasmatischem Retikulum konnte mit entsprechenden Fluoreszenz-Farbstoffen ausgeschlossen werden. Zusätzlich reicherten sich die überexprimierten Proteine hCAT-1.EGFP, hCAT-2B.EGFP und SLC7A14.EGFP in der lysosomalen Fraktion C aus U373MG-Zellen zusammen mit den lysosomalen Markern LAMP-1 und Cathepsin D an. Gleiches galt für den endogenen hCAT-1 in der lysosomalen Fraktion C aus EA.hy926- und U373MG-Zellen sowie für den SLC7A14 in den humanen Hautfibroblasten FCys5. Mit dem im Rahmen dieser Arbeit generierte Antikörper gegen natives SLC7A14 konnte erstmals die endogene Expression und Lokalisation von SLC7A14 in verschiedenen Zelltypen analysiert werden.rnObwohl eine Herunterregulation des hCAT-1 in EA.hy926-Endothelzellen nicht zu einer Reduktion der Versorgung der eNOS mit lysosomalem Arginin führte, ist eine Funktion von hCAT-1 im Lysosom wahrscheinlich. Sowohl die [3H]Arginin- als auch die [3H]Lysin-Aufnahme der Fraktion C aus U373MG-hCAT-1.EGFP war signifikant höher als in die Fraktion C aus EGFP-Kontrollzellen. Dies konnte ebenfalls für den hCAT-2B.EGFP gezeigt werden. Zusätzlich zeigten lysosomale Proben aus U373MG-hCAT-2B.EGFP-Zellen in der SSM-basierten Elektrophysiologie eine elektrogene Transportaktivität für Arginin. Das Protein SLC7A14.EGFP zeigte in keiner der beiden durchgeführten Transportstudien eine Aktivität. Dies war unerwartet, da die aus der Diplomarbeit stammende und im Rahmen dieser Dissertation erweiterte Charakterisierung der hCAT-2/A14_BK-Chimäre, die die „funktionelle Domäne“ des SLC7A14 im Rückgrat des hCAT-2 trug, zuvor den Verdacht erhärtet hatte, dass SLC7A14 ein lysosomal lokalisierter Transporter für KAS sein könnte. Diese Studien zeigten allerding erstmals, dass die „funktionelle Domäne“ der hCATs die pH-Abhängigkeit vermittelt und eine Rolle in der Substraterkennung spielt.rnZukünftig soll weiter versucht werden auch endogen eine Transportaktivität der hCATs für KAS im Lysosom nachzuweisen und das Substrat für das intrazellulär lokalisierte Waisen-Protein SLC7A14 zu finden. Eine mögliche Rolle könnte SLC7A14 als Transporter für Neurotransmitter spielen, da eine sehr prominente Expression im ZNS festgestellt wurde.rn
Resumo:
DNA is a fascinating biomolecule that is well known for its genetic role in living systems. The emerging area of DNA nanotechnology provides an alternative view that exploits unparallel self-assembly ability of DNA molecules for material use of DNA. Although many reports exist on the results of DNA self-assembling systems, still few of them focus on the in vitro study about the function of such DNA nanostructures in live cells. Due to this, there are still a limited research about the in vitro functionality of such designs. To address an aspect of this issue, we have designed, synthesized and characterized two multifunctional fluorescencent nanobiosensors by DNA self-assembling. Each structure was designed and implemented to be introduced in live cells in order to give information on their functioning in real-time. Computational tools were used in order to design a graphic model of two new DNA motifs and also to obtain the specific sequences to all the ssDNA molecules. By thermal self-assembly techniques we have successfully synthesized the structure and corroborate their formation by the PAGE technique. In addition, we have established the conditions to characterize their structural conformation change when they perform their sensor response. The sensing behavior was also accomplished by fluorescence spectroscopy techniques; FRET evaluation and fluorescence microscopy imaging. Providing the evidence about their adequate sensing performance outside and inside the cells detected in real-time. In a preliminary evaluation we have tried to show the in vitro functionality of our structures in different cancer cell lines with the ability to perform local sensing responses. Our findings suggest that DNA sensor nanostructures could serve as a platform to exploit further therapeutic achievements in live cells.
Resumo:
Aerosol particles are important actors in the Earth’s atmosphere and climate system. They scatter and absorb sunlight, serve as nuclei for water droplets and ice crystals in clouds and precipitation, and are a subject of concern for public health. Atmospheric aerosols originate from both natural and anthropogenic sources, and emissions resulting from human activities have the potential to influence the hydrological cycle and climate. An assessment of the extent and impacts of this human force requires a sound understanding of the natural aerosol background. This dissertation addresses the composition, properties, and atmospheric cycling of biogenic aerosol particles, which represent a major fraction of the natural aerosol burden. The main focal points are: (i) Studies of the autofluo-rescence of primary biological aerosol particles (PBAP) and its application in ambient measure-ments, and (ii) X-ray microscopic and spectroscopic investigations of biogenic secondary organic aerosols (SOA) from the Amazonian rainforest.rnAutofluorescence of biological material has received increasing attention in atmospheric science because it allows real-time monitoring of PBAP in ambient air, however it is associated with high uncertainty. This work aims at reducing the uncertainty through a comprehensive characterization of the autofluorescence properties of relevant biological materials. Fluorescence spectroscopy and microscopy were applied to analyze the fluorescence signatures of pure biological fluorophores, potential non-biological interferences, and various types of reference PBAP. Characteristic features and fingerprint patterns were found and provide support for the operation, interpretation, and further development of PBAP autofluorescence measurements. Online fluorescence detection and offline fluorescence microscopy were jointly applied in a comprehensive bioaerosol field measurement campaign that provided unprecedented insights into PBAP-linked biosphere-atmosphere interactions in a North-American semi-arid forest environment. Rain showers were found to trigger massive bursts of PBAP, including high concentrations of biological ice nucleators that may promote further precipitation and can be regarded as part of a bioprecipitation feedback cycle in the climate system. rnIn the pristine tropical rainforest air of the Amazon, most cloud and fog droplets form on bio-genic SOA particles, but the composition, morphology, mixing state and origin of these particles is hardly known. X-ray microscopy and spectroscopy (STXM-NEXAFS) revealed distinctly different types of secondary organic matter (carboxyl- vs. hydroxy-rich) with internal structures that indicate a strong influence of phase segregation, cloud and fog processing on SOA formation, and aging. In addition, nanometer-sized potassium-rich particles emitted by microorganisms and vegetation were found to act as seeds for the condensation of SOA. Thus, the influence of forest biota on the atmospheric abundance of cloud condensation nuclei appears to be more direct than previously assumed. Overall, the results of this dissertation suggest that biogenic aerosols, clouds and precipitation are indeed tightly coupled through a bioprecipitation cycle, and that advanced microscopic and spectroscopic techniques can provide detailed insights into these mechanisms.rn
Resumo:
Übergangsmetallen wie Nickel und Cobalt kommt meist eine große Bedeutung als Cofaktor in Enzymen oder Metallkomplexen im Metabolismus von Lebewesen zu. Da eine sehr geringe Konzentration dieser Übergangsmetalle in einer Zelle für deren Funktionalität ausreicht, ist eine konstante Konzentration der Spurenelemente in einer Zelle angestrebt. Durch meist anthropogene Einflüsse sind Pflanzen und Menschen zunehmend hohen Konzentrationen von Übergangsmetallen ausgesetzt, die in Abhängigkeit von ihrer Spezies, der Konzentration und der Lokalisation unterschiedliche Toxizitäten aufweisen können. Die Speziation von Metallen wurde bisher mittels gängiger Analyseverfahren, wie der ICP-MS und ähnlicher Verfahren, anhand von bulk-Material durchgeführt. Durch die Entwicklung von optischen Sensoren für Metallionen war es möglich, diese Metalle auch in lebenden Zellen mittels Fluoreszenzmikroskopie zu lokalisieren. Ke und Kollegen (2006, 2007) nutzten einen solchen optischen Sensor - Newport Green DCF, um die Aufnahme von Nickel in humane A543 Lungenbronchialepithelzellen nach Inkubation mit dem wasserlöslichen NiCl2 (0,5 mM und 1 mM) sowie den wasserunlöslichen Verbindungen Ni3S2 (0,5 µg/cm2 und 1 µg/cm2) und NiS (2,5 µg/cm2) nachzuweisen und zu lokalisieren und konnten damit eine Akkumulation von Nickel im Zytoplasma und im Zellkern aufzeigen. Dabei war bei wasserlöslichen und wasserunlöslichen Nickelverbindungen Nickel nach 24 h im Zytoplasma und erst nach 48 h im Zellkern zu beobachten.rnrnDa Nickel und Cobalt keine detektierbare Eigenfluoreszenz unter den gegebenen Bedingungen zeigten, wurde für den optischen Nachweis von Nickel und Cobalt mit dem konfokalen Laser-Raster Mikroskop (CLSM) nach der Zugabe der verschiedenen wasserlöslichen und wasserunlöslichen Metallverbindungen NiCl2, NiSO4, Ni3S2 und CoCl2 in einzelnen lebenden humanen Gingiva-Fibroblasten, sowie in Pflanzenzellen in dieser Arbeit ebenfalls der optische Sensor Newport Green DCF genutzt. Korrespondierend zu den Ergebnissen früherer Arbeiten von Ke et al. (2006, 2007), in denen die Nickelaufnahme bei Konzentrationen von >0,5 mM NiCl2 bzw. >0,5 µg/cm2 Ni3S2 gezeigt wurde, wurde Nickel in Fibroblasten in Abhängigkeit von der Spezies mit steigender Metallkonzentration von 100 µM bis 500 µM nach 16 h im Zytoplasma und zunehmend nach 24 h bis 48 h im Zellkern detektiert. Bei der wasserunlöslichen Verbindung Ni3S2 war der Nachweis von Nickel im Zellkern bereits nach 16 h bis 24 h erfolgreich. Zusätzlich wurden weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien und die Nukleoli durch eine starke Fluoreszenz des optischen Sensors bei Colokalisationsexperimenten mit Organell-spezifischen Fluoreszenzfarbstoffen als target für die Nickelbindung vermutet. Die Lokalisation von Cobalt in den Fibroblasten entsprach weitgehend der Lokalisation von Nickel. Im Zellkern war die Cobaltlokalisation jedoch auf die Nukleoli beschränkt. Weiterführende Versuche an humanen Gingiva-Fibroblasten zeigten, dass die Aufnahme der Metalle in die Fibroblasten pH-Wert abhängig war. Niedrige pH-Werte im sauren pH-Bereich verringerten die Aufnahme der Metalle in die Zellen, wobei ein pH-Wert im basischen Bereich keinen bedeutenden Unterschied zum neutralen pH-Bereich aufwies. Im Vergleich zu den Fibroblasten war in Pflanzenzellen zu jedem Zeitpunkt, auch bei geringen Konzentrationen der Metallverbindungen sowie des optischen Sensors, Nickel und Cobalt in den Zellkernen detektierbar. Durch die Eigenschaft der Pflanzenzellen eine Vakuole zu besitzen, war Nickel und Cobalt hauptsächlich in den Vakuolen lokalisiert. Weitere Strukturen wie das Endoplasmatische Retikulum, die Mitochondrien oder auch die Zellwand kamen bei Pflanzenzellen als target in Frage.rnrnDie Fluoreszenz und Lokalisation der Metalle in den Fibroblasten waren unabhängig von der Spezies sehr ähnlich, sodass in den Zellen die Spezies anhand der fluoreszenzmikroskopischen Aufnahmen kaum unterschieden werden konnten. Lambda-Scans in verschiedenen regions of interest (ROI) wurden durchgeführt, um durch die Fluoreszenzspektren Hinweise auf eine charakteristische Beeinflussung der Bindungspartner von Nickel und Cobalt oder dieser Metalle selbst in den Zellen auf den optischen Sensor zu bekommen und diese dadurch identifizieren zu können. Das Ziel der parallelen Detektion bzw. Lokalisation und gleichzeitigen Speziation bestimmter Nickel- und Cobaltpezies in einzelnen lebenden Zellen konnte in dieser Arbeit durch den optischen Sensor Newport Green DCF nicht erreicht werden.