925 resultados para enzymatisch verändertes LDL (E-LDL)
Resumo:
Emerging science supports therapeutic roles of strawberries, blueberries, and cranberries in metabolic syndrome, a prediabetic state characterized by several cardiovascular risk factors. Interventional studies reported by our group and others have demonstrated the following effects: strawberries lowering total and LDL-cholesterol, but not triglycerides, and decreasing surrogate biomarkers of atherosclerosis (malondialdehyde and adhesion molecules); blueberries lowering systolic and diastolic blood pressure and lipid oxidation and improving insulin resistance; and low-calorie cranberry juice selectively decreasing biomarkers of lipid oxidation (oxidized LDL) and inflammation (adhesion molecules) in metabolic syndrome. Mechanistic studies further explain these observations as up-regulation of endothelial nitric oxide synthase activity, reduction in renal oxidative damage, and inhibition of the activity of carbohydrate digestive enzymes or angiotensin-converting enzyme by these berries. These findings need confirmation in future studies with a focus on the effects of strawberry, blueberry, or cranberry intervention in clinical biomarkers and molecular mechanisms underlying the metabolic syndrome.
Resumo:
The risk of diabetic retinopathy is associated with the presence of both oxidative stress and toxic eicosanoids. Whether oxidative stress actually causes diabetic retinopathy via the generation of toxic eicosanoids, however, remains unknown. The aim of the present study was to determine whether tyrosine nitration of prostacyclin synthase (PGIS) contributes to retinal cell death in vitro and in vivo. Exposure of human retinal pericytes to heavily oxidized and glycated LDL (HOG-LDL), but not native forms of LDL (N-LDL), for 24 hours significantly increased pericyte apoptosis, accompanied by increased tyrosine nitration of PGIS and decreased PGIS activity. Inhibition of the thromboxane receptor or cyclooxygenase-2 dramatically attenuated HOG-LDL-induced apoptosis without restoring PGIS activity. Administration of superoxide dismutase (to scavenge superoxide anions) or L-N(G)-nitroarginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) restored PGIS activity and attenuated pericyte apoptosis. In Akita mouse retinas, diabetes increased intraretinal levels of oxidized LDL and glycated LDL, induced PGIS nitration, enhanced apoptotic cell death, and impaired blood-retinal barrier function. Chronic administration of tempol, a superoxide scavenger, reduced intraretinal oxidized LDL and glycated LDL levels, PGIS nitration, and retina cell apoptosis, thereby preserving the integrity of blood-retinal barriers. In conclusion, oxidized LDL-mediated PGIS nitration and associated thromboxane receptor stimulation might be important in the initiation and progression of diabetic retinopathy.
Resumo:
Aims. To examine the antioxidant and anti-inflammatory effects of pomegranate polyphenols in obese patients with type 2 diabetes (T2DM) (n = 8) and in healthy nondiabetic controls (n = 9). Methods. Participants received 2 capsules of pomegranate polyphenols (POMx, 1 capsule = 753?mg polyphenols) daily for 4 weeks. Blood draws and anthropometrics were performed at baseline and at 4 weeks of the study. Results. Pomegranate polyphenols in healthy controls and in T2DM patients did not significantly affect body weight and blood pressure, glucose and lipids. Among clinical safety profiles, serum electrolytes, renal function tests, and hematological profiles were not significantly affected by POMx supplementation. However, aspartate aminotransferase (AST) showed a significant increase in healthy controls, while alanine aminotransferase (ALT) was significantly decreased in T2DM patients at 4 weeks (P <0.05), though values remained within the normal ranges. Among the biomarkers of lipid oxidation and inflammation, oxidized LDL and serum C-reactive protein (CRP) did not differ at 4 weeks in either group, while pomegranate polyphenols significantly decreased malondialdehyde (MDA) and hydroxynonenal (HNE) only in the diabetic group versus baseline (P <0.05). Conclusions. POMx reduces lipid peroxidation in patients with T2DM, but with no effects in healthy controls, and specifically modulates liver enzymes in diabetic and nondiabetic subjects. Larger clinical trials are merited.
Resumo:
Dyslipidemia is an important risk factor for cardiovascular complications in persons with diabetes. Low-density lipoprotein-cholesterol (LDL-C) is the 'cornerstone' for assessment of lipoprotein-associated risk. However, LDL-C levels do not reflect the classic 'diabetic dyslipidemia' of hypertriglyceridemia and low high-density lipoprotein-cholesterol (HDL-C). Measurements of plasma apolipoprotein B100 concentrations and non-HDL-C may improve the definition of dyslipidemia. Statins, nicotinic acid and fibrates have roles in treating dyslipidemia in diabetes. Residual risk (i.e. risk that persists after correction of 'conventional' plasma lipoprotein abnormalities) is a new concept in the role of dyslipidemia in the pathogenesis of diabetic vascular complications. For example, regardless of plasma levels, lipoprotein extravasation through a leaking retinal blood barrier and subsequent modification may be crucial in the development of diabetic retinopathy. The current approach to the management of dyslipidemia in diabetes is briefly summarized, followed by a discussion of new concepts of residual risk and emerging lipoprotein-related mechanisms for vascular disease in diabetes.
Resumo:
Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 µmol/L [means ± SD], P <.05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 µmol/L, respectively [means ± SD], P <.05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.
Resumo:
Microalbuminuria is a common diagnosis in the clinical care of patients with type 1 diabetes mellitus. Long-term outcomes after the development of microalbuminuria are variable.
Resumo:
Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes.
Resumo:
Strawberries have been reported to be potent antioxidants and reduce cardiovascular risk factors, such as elevated blood pressure, hyperglycemia, dyslipidemia, and inflammation in limited studies. We hypothesized that freeze-dried strawberry supplementation will improve blood pressure, impaired glucose, dyslipidemia, or circulating adhesion molecules in obese subjects with metabolic syndrome, thereby lowering cardiovascular risk factors in these subjects. Twenty-seven subjects with metabolic syndrome (2 males and 25 females; body mass index, 37.5 +/- 2.15 kg/m(2); age, 47.0 +/- 3.0 years [means +/- SE]) consumed 4 cups of freeze-dried strawberry beverage (50 g freeze-dried strawberries approximately 3 cups fresh strawberries) or equivalent amounts of fluids (controls, 4 cups of water) daily for 8 weeks in a randomized controlled trial. Anthropometrics and blood pressure measurements, assessment of dietary intakes, and fasting blood draws were conducted at screen and 8 weeks of the study. Strawberry supplementation significantly decreased total and low-density lipoprotein cholesterol (5.8 +/- 0.2 to 5.2 +/- 0.2 mmol/L and 3.5 +/- 0.2 to 3.1 +/- 0.1 mmol/L, respectively [means +/- SE], P <.05) and small low-density lipoprotein particles using nuclear magnetic resonance-determined lipoprotein subclass profile vs controls at 8 weeks (794.6 +/- 94.0 to 681.8 +/- 86.0 nmol/L [means +/- SE], P <.05). Strawberry supplementation further decreased circulating levels of vascular cell adhesion molecule-1 vs controls at 8 weeks (272.7 +/- 17.4 to 223.0 +/- 14.0 ng/mL [means +/- SE], P <.05). Serum glucose, triglycerides, high-density lipoprotein cholesterol, blood pressure, and waist circumference were not affected. Thus, short-term freeze-dried strawberry supplementation improved selected atherosclerotic risk factors, including dyslipidemia and circulating adhesion molecules in subjects with metabolic syndrome, and these results need confirmation in future trials.
Resumo:
Among all fruits, berries have shown substantial cardio-protective benefits due to their high polyphenol content. However, investigation of their efficacy in improving features of metabolic syndrome and related cardiovascular risk factors in obesity is limited. We examined the effects of blueberry supplementation on features of metabolic syndrome, lipid peroxidation, and inflammation in obese men and women. Forty-eight participants with metabolic syndrome [4 males and 44 females; BMI: 37.8 +/- 2.3 kg/m(2); age: 50.0 +/- 3.0 y (mean +/- SE)] consumed freeze-dried blueberry beverage (50 g freeze-dried blueberries, approximately 350 g fresh blueberries) or equivalent amounts of fluids (controls, 960 mL water) daily for 8 wk in a randomized controlled trial. Anthropometric and blood pressure measurements, assessment of dietary intakes, and fasting blood draws were conducted at screening and at wk 4 and 8 of the study. The decreases in systolic and diastolic blood pressures were greater in the blueberry-supplemented group (- 6 and - 4%, respectively) than in controls (- 1.5 and - 1.2%) (P lt 0.05), whereas the serum glucose concentration and lipid profiles were not affected. The decreases in plasma oxidized LDL and serum malondialdehyde and hydroxynonenal concentrations were greater in the blueberry group (- 28 and - 17%, respectively) than in the control group (- 9 and - 9%) (P lt 0.01). Our study shows blueberries may improve selected features of metabolic syndrome and related cardiovascular risk factors at dietary achievable doses.
Resumo:
Berries are a good source of polyphenols, especially anthocyanins, micronutrients, and fiber. In epidemiological and clinical studies, these constituents have been associated with improved cardiovascular risk profiles. Human intervention studies using chokeberries, cranberries, blueberries, and strawberries (either fresh, or as juice, or freeze-dried), or purified anthocyanin extracts have demonstrated significant improvements in LDL oxidation, lipid peroxidation, total plasma antioxidant capacity, dyslipidemia, and glucose metabolism. Benefits were seen in healthy subjects and in those with existing metabolic risk factors. Underlying mechanisms for these beneficial effects are believed to include upregulation of endothelial nitric oxide synthase, decreased activities of carbohydrate digestive enzymes, decreased oxidative stress, and inhibition of inflammatory gene expression and foam cell formation. Though limited, these data support the recommendation of berries as an essential fruit group in a heart-healthy diet.
Resumo:
Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.
Resumo:
We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.
Resumo:
According to a current paradigm cardiovascular diseases can be initiated by exposure of vascular cells to qualitatively modified low-density lipoproteins (LDL). Capillary leakage, an early feature of diabetic retinopathy, results in the exposure of retinal pericytes to modified LDL, including glycated (G-LDL) and heavily oxidized glycated LDL (HOG-LDL). We demonstrate here that modified LDL inhibits the proliferation and survival of cultured human retinal pericytes. Modified LDL also induced DNA fragmentation in bovine retinal pericytes. Overall, HOG-LDL produced a significantly higher extent of cytotoxicity and apoptosis in retinal pericytes. These results indicate that exposure of pericytes to HOG-LDL could be implicated in the development of diabetic retinopathy.
Resumo:
Type 1 diabetes mellitus is associated with an increased risk of cardiovascular disease (CVD) that is not fully explained by conventional risk factors. The Diabetes Control and Complications Trial (DCCT) showed that intensive diabetes therapy reduced levels of LDL cholesterol and triglycerides but increased the risk of major weight gain, which might adversely affect CVD risk. The present study examined the effect of intensive therapy on levels of several markers of inflammation that have been linked to risk of CVD.