902 resultados para dynamic modeling and simulation
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
In this thesis, I develop analytical models to price the value of supply chain investments under demand uncer¬tainty. This thesis includes three self-contained papers. In the first paper, we investigate the value of lead-time reduction under the risk of sudden and abnormal changes in demand forecasts. We first consider the risk of a complete and permanent loss of demand. We then provide a more general jump-diffusion model, where we add a compound Poisson process to a constant-volatility demand process to explore the impact of sudden changes in demand forecasts on the value of lead-time reduction. We use an Edgeworth series expansion to divide the lead-time cost into that arising from constant instantaneous volatility, and that arising from the risk of jumps. We show that the value of lead-time reduction increases substantially in the intensity and/or the magnitude of jumps. In the second paper, we analyze the value of quantity flexibility in the presence of supply-chain dis- intermediation problems. We use the multiplicative martingale model and the "contracts as reference points" theory to capture both positive and negative effects of quantity flexibility for the downstream level in a supply chain. We show that lead-time reduction reduces both supply-chain disintermediation problems and supply- demand mismatches. We furthermore analyze the impact of the supplier's cost structure on the profitability of quantity-flexibility contracts. When the supplier's initial investment cost is relatively low, supply-chain disin¬termediation risk becomes less important, and hence the contract becomes more profitable for the retailer. We also find that the supply-chain efficiency increases substantially with the supplier's ability to disintermediate the chain when the initial investment cost is relatively high. In the third paper, we investigate the value of dual sourcing for the products with heavy-tailed demand distributions. We apply extreme-value theory and analyze the effects of tail heaviness of demand distribution on the optimal dual-sourcing strategy. We find that the effects of tail heaviness depend on the characteristics of demand and profit parameters. When both the profit margin of the product and the cost differential between the suppliers are relatively high, it is optimal to buffer the mismatch risk by increasing both the inventory level and the responsive capacity as demand uncertainty increases. In that case, however, both the optimal inventory level and the optimal responsive capacity decrease as the tail of demand becomes heavier. When the profit margin of the product is relatively high, and the cost differential between the suppliers is relatively low, it is optimal to buffer the mismatch risk by increasing the responsive capacity and reducing the inventory level as the demand uncertainty increases. In that case, how¬ever, it is optimal to buffer with more inventory and less capacity as the tail of demand becomes heavier. We also show that the optimal responsive capacity is higher for the products with heavier tails when the fill rate is extremely high.
Resumo:
Postprint (published version)
Resumo:
This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.
Resumo:
Tutkimuksen tavoitteena on tutkia telekommunikaatioalalla toimivan kohdeyrityksen ohjelmistojen toimitusprosessia° Tutkimus keskittyy mallintamaan toimitusprosessin, määrittelemään roolit ja vastuualueet, havaitsemaan ongelmakohdat ja ehdottamaan prosessille kehityskohteita. Näitä tavoitteita tarkastellaan teoreettisten prosessimallinnustekniikoiden ja tietojohtamisen SECI-prosessikehyksen läpi. Tärkein tiedonkeruun lähde oli haastatteluihin perustuva tutkimus, johon osallistuvat kaikki kohdeprosessiin kuuluvat yksiköt. Mallinnettu toimitusprosessi antoi kohdeyritykselle paremman käsityksen tarkasteltavasta prosessista ja siinä toimivien yksiköiden rooleistaja vastuualueista. Parannusehdotuksia olivat tiedonjaon kanavoinnin määritteleminen, luottamuksen ja sosiaalisten verkostojen parantaminen, ja tietojohtamisen laajamittainen implementointi.
Resumo:
Firms operating in a changing environment have a need for structures and practices that provide flexibility and enable rapid response to changes. Given the challenges they face in attempts to keep up with market needs, they have to continuously improve their processes and products, and develop new products to match market requirements. Success in changing markets depends on the firm's ability to convert knowledge into innovations, and consequently their internal structures and capabilities have an important role in innovation activities. According 10 the dynamic capability view of the firm, firms thus need dynamic capabilities in (he form ofassets, processes and structures that enable strategic flexibility and support entrepreneurial opportunity sensing and exploitation. Dynamic capabilities are also needed in conditions of rapid change in the operating environment, and in activities such as new product development and expansion to new markets. Despite the growing interest in these issues and the theoretical developments in the field of strategy research, there are still only very few empirical studies, and large-scale empirical studies in particular, that provide evidence that firms'dynamic capabilities are reflected in performance differences. This thesis represents an attempt to advance the research by providing empirical evidence of thelinkages between the firm's dynamic capabilities and performance in intenationalization and innovation activities. The aim is thus to increase knowledge and enhance understanding of the organizational factors that explain interfirm performance differences. The study is in two parts. The first part is the introduction and the second part comprises five research publications covering the theoretical foundations of the dynamic capability view and subsequent empirical analyses. Quantitative research methodology is used throughout. The thesis contributes to the literature in several ways. While a lot of prior research on dynamic capabilities is conceptual in nature, or conducted through case studies, this thesis introduces empirical measures for assessing the different aspects, and uses large-scale sampling to investigate the relationships between them and performance indicators. The dynamic capability view is further developed by integrating theoretical frameworks and research traditions from several disciplines. The results of the study provide support for the basic tenets of the dynamic capability view. The empirical findings demonstrate that the firm's ability to renew its knowledge base and other intangible assets, its proactive, entrepreneurial behavior, and the structures and practices that support operational flexibility arepositively related to performance indicators.
Resumo:
Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.
Resumo:
Data was analyzed on development of the solanaceen fruit crop Cape gooseberry to evaluate how well a classical thermal time model could describe node appearance in different environments. The data used in the analysis were obtained from experiments conducted in Colombia in open fields and greenhouse condition at two locations with different climate. An empirical, non linear segmented model was used to estimate the base temperature and to parameterize the model for simulation of node appearance vs. time. The base temperature (Tb) used to calculate the thermal time (TT, ºCd) for node appearance was estimated to be 6.29 ºC. The slope of the first linear segment was 0.023 nodes per TT and 0.008 for the second linear segment. The time at which the slope of node apperance changed was 1039.5 ºCd after transplanting, determined from a statistical analysis of model for the first segment. When these coefficients were used to predict node appearance at all locations, the model successfully fit the observed data (RSME=2.1), especially for the first segment where node appearance was more homogeneous than the second segment. More nodes were produced by plants grown under greenhouse conditions and minimum and maximum rates of node appearance rates were also higher.
Resumo:
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.
Resumo:
Tutkielman tavoitteena oli selvittää dynaamisten kyvykkyyksien teorian kehittymistä ja nykytilaa. Työssä tarkastellaan myös mahdollisuuksia yhdistää reaalioptioajattelua ja dynaamisten kyvykkyyksien teoriaa. Tutkielma on toteutettu teoreettisena kirjallisuuskatsauksena. Dynaamisten kyvykkyyksien teorian mukaan muuttuvassa toimintaympäristössä yritysten kilpailuetu perustuu kykyyn rakentaa, yhdistää ja muokata resursseja ja kyvykkyyksiä. Yritysten täytyy pystyä löytämään, sulauttamaan ja muuntamaan tietoa voidakseen tunnistaa uusia mahdollisuuksia ja pystyäkseen reagoimaan niihin. Tutkielma tuo esille uusia yhteyksiä dynaamisten kyvykkyyksien teorian ja yritysten käyttäytymisen välillä. Reaalioptioajattelu auttaa tunnistamaan yrityksen rajojen määrittämiseen vaikuttavia tekijöitä. Työssä tehdään ehdotuksia dynaamisten kyvykkyyksien teorian jatkotutkimusta varten.