913 resultados para divergent diagram of folds
Resumo:
Epilithic biofilm on rocky shores is regulated by physico-chemical and biological factors and is important as a source of food for benthic organisms. The influences of environmental and grazing pressure on spatial variability of biomass of biofilm were evaluated on shores on the north coast of São Paulo State (SE Brazil). A general trend of greater abundance of microalgae was observed lower on the shore, but neither of the environmental factors evaluated (wave exposure and shore level) showed consistent effects, and differences were found among specific shores or times (September 2007 and March 2008). The abundance of slow-moving grazers (limpets and littorinids) showed a negative correlation with chlorophyll a concentration on shores. However, experimental exclusion of these grazers failed to show consistent results at small spatial scales. Observations of divergent abundances of the isopod Ligia exotica and biomass of biofilm on isolated boulders on shores led to a short exclusion experiment, where the grazing pressure by L. exotica significantly decreased microalgal biomass. The result suggests that grazing activities of this fast-moving consumer probably mask the influence of slow-moving grazers at small spatial scales, while both have an additive effect at larger scales that masks environmental influences. This is the first evaluation of the impact of the fast-moving herbivore L. exotica on microalgal biomass on rocky shores and opens an interesting discussion about the role of these organisms in subtropical coastal environments.
Resumo:
Poster presented at the 17th Annual International Meeting of the Institute of Human Virology. Baltimore, 27-30 September 2015
Resumo:
Internal marketing has been discussed in the management and academic literature for over three decades, yet it remains ill defined and poorly operationalized. This paper responds to calls for research to develop a single clear understanding of the construct, for the development of a suitable instrument to measure it, and for empirical evidence of its impact. Existing, divergent conceptualization of internal marketing are explored, and a new, multidimensional construct, describing the managerial behaviors associated with internal marketing is developed, and termed internal market orientation (IMO). IMO represents the adaptation of market orientation to the context of employer-employee exchanges in the internal market. The paper describes the development of a valid and reliable measure of IMO in a retail services context. Five dimensions of IMO are identified and confirmed. These are 1) formal written information generation, 2) formal face-to-face information generation, 3) informal information generation, 4) communication and dissemination of information, and 5) responding to this internal market information. The impact of IMO on important organizational factors is also explored. Results indicate positive consequences for customer satisfaction, relative competitive position, staff attitudes, staff retention and staff compliance.
Resumo:
Folio submission is universally regarded as the most appropriate means for measuring a student’s performance in the studio. However, developing meaningful and defensible assessment criteria is persistent challenge for all tertiary art educators. In discipline-based studios, the parameters provided by medium and technique provide useful points of reference for assessing creative performance. But how can student performance be evaluated when there is no discipline-based framework to act as a point of reference? The ‘open’ studio approach to undergraduate teaching presents these and other pedagogical challenges. This paper discusses the innovative approaches to studio-based teaching and assessment at QUT. Vital to the QUT open studio model is the studio rationale – an exegetical document that establishes an individualised theoretical framework through which a student’s understandings can be, in part, evaluated. This paper argues that the exegetical folio effectively reconciles the frequently divergent imperatives of creative, professional and academic skills, while retaining the centrality of the studio as a site for the production of new material, processual and conceptual understandings.
Resumo:
In Australian universities, journalism educators usually come to the academy from the journalism profession and consequently place a high priority on leading students to develop a career-focussed skill set. The changing nature of the technological, political and economic environments and the professional destinations of journalism graduates place demands on journalism curricula and educators alike. The profession is diverse, such that the better description is of many ‘journalisms’ rather than one ‘journalism’ with consequential pressures being placed on curricula to extend beyond the traditional skill set, where practical ‘writing’ and ‘editing’ skills dominate, to the incorporation of critical theory and the social construction of knowledge. A parallel set of challenges faces academic staff operating in a higher education environment where change is the only constant and research takes precedent over curriculum development. In this paper, three educators at separate universities report on their attempts to implement curriculum change to imbue graduates with better skills and attributes such as enhanced team work, problem solving and critical thinking, to operate in the divergent environment of 21st century journalism. The paper uses narrative case study to illustrate the different approaches. Data collected from formal university student evaluations inform the narratives along with rich but less formal qualitative data including anecdotal student comments and student reflective assessment presentations. Comparison of the three approaches illustrates the dilemmas academic staff face when teaching in disciplines that are impacted by rapid changes in technology requiring new pedagogical approaches. Recommendations for future directions are considered against the background or learning purpose.
Resumo:
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1fms) to produce syngeneic TRAMPfmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1fms and syngeneic C57BL/6 mice. Whilst TRAMPfmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.
Resumo:
The Multidimensional Loss Scale: Initial Development and Psychometric Evaluation The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to measure loss in refugee populations. Researchers developed initial items of the Multidimensional Loss Scale to assess Experience of Loss Events and Loss Distress in a culturally sensitive manner across multiple domains (social, material, intra-personal and cultural). A sample of 70 recently settled Burmese adult refugees completed a battery of questionnaires, including new scale items. Analyses explored the scale’s factor structure, internal consistency, convergent validity and divergent validity. Principal Axis Factoring supported a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Chronbach’s Alphas indicated satisfactory internal consistency for Experience of Loss Events (.85) and Loss Distress (.92). Convergent and divergent validity of Loss Distress were supported by moderate correlations with interpersonal grief and trauma symptoms and weak correlations with depression and anxiety. The new scale was well received by people from refugee backgrounds and shows promise for application in future research and practice
Resumo:
This paper describes in detail our Security-Critical Program Analyser (SCPA). SCPA is used to assess the security of a given program based on its design or source code with regard to data flow-based metrics. Furthermore, it allows software developers to generate a UML-like class diagram of their program and annotate its confidential classes, methods and attributes. SCPA is also capable of producing Java source code for the generated design of a given program. This source code can then be compiled and the resulting Java bytecode program can be used by the tool to assess the program's overall security based on our security metrics.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
The Sessional Academic Success (SAS) project is a sustainable, distributed model for supporting sessional staff at QUT. Developed by the Learning and Teaching Unit. SAS complements our Sessional Academic Program (SAP): a sequence of formal academic development workshops explained in complementary nomination. SAS recognises that while these programs are very well received and a crucial aspect of preparing and advancing sessional teachers, they are necessarily encapsulated in the moment of their delivery and are generic, as they address all faculties (with their varied cultures, processes and pedagogies). The SAS project extends this formal, centrally offered activity into local, ‘just in time’, ongoing support within schools. It takes a distributed leadership approach. Experienced sessional academics are recruited and employed as Sessional Academic Success Advisors (SASAs). They provide sessional staff in their schools with contextually specific, needs based, peer-to-peer development opportunities; one-on-one advice on classroom management and strategies for success; and help to trouble-shoot challenges. The SASAs are trained by the Learning and Teaching Unit co-ordinator, and ongoing support is provided centrally and by school-based co-ordinators. This team approach situates the SASAs at the centre of an organisation map (see diagram of support relationships below). The SAS project aims to support sessional staff in their professional development by: • Offering contextual, needs-based support at school level by harnessing local expertise; • Providing further development opportunities that are local and focal; SAS aims to retain Sessional Staff by: • Responding to self-nominated requests for support and ‘just in time’, safe and reliable advice in times of need; • Building sessional staff confidence through help with dealing with challenges from a trusted peer; • Building a supportive academic community for sessional staff, which helps them feel a part of faculty life, and a community of teaching practice. SAS aims to support sessional staff in the development of academic teaching careers by: • Recognising the capacity of experienced sessional staff to support their peers in ways that are unique, valuable and valued and providing the agency to do so; • Providing career advancement and leadership opportunities for sessional staff. SAS takes unique approaches within each school using strategies such as: • Welcomes and schools orientation by SASAs; • Regular check ins; face-to-face advice and online support; • Compiling local resources to complement university wide resources. • Sessional-to-sessional ‘just in time’ training (eg. assessment and marking when marking commences); • Peer feedback and mentoring (the opportunities to sit in more experiences sessionals’ classes; • Sessional staff awards (nominated by students); • Communities of practice to discuss topics and issues with a view to (and support for) publishing on learning and teaching. In these ways, SASAs complement support offered by unit coordinators, administrators, and the Learning and Teaching Unit. Pairing senior and ‘understudy’ advisors ensures a line of succession, sustainability and continuity. A pilot program commenced in 2012 involving three schools (Psychology and Social Work; Electrical Engineering and Computer Science; Media, Entertainment and Creative Arts). It will be expanded across schools in 2013.
Resumo:
This is an exploratory study into the effective use of embedding custom made audiovisual case studies (AVCS) in enhancing the student’s learning experience. This paper describes a project that used AVCS for a large divergent cohort of undergraduate students, enrolled in an International Business course. The study makes a number of key contributions to advancing learning and teaching within the discipline. AVCS provide first hand reporting of the case material, where the students have the ability to improve their understanding from both verbal and nonverbal cues. The paper demonstrates how AVCS can be embedded in a student-centred teaching approach to capture the students’ interest and to enhance a deep approach to learning by providing real-world authentic experience.
Resumo:
We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
A preliminary study of self-interrupted regenerative turning is performed in this paper. To facilitate the analysis, a new approach is proposed to model the regenerative effect in metal cutting. This model automatically incorporates the multiple-regenerative effects accompanying self-interrupted cutting. Some lower dimensional ODE approximations are obtained for this model using Galerkin projections. Using these ODE approximations, a bifurcation diagram of the regenerative turning process is obtained. It is found that the unstable branch resulting from the subcritical Hopf bifurcation meets the stable branch resulting from the self-interrupted dynamics in a turning point bifurcation. Using a rough analytical estimate of the turning point tool displacement, we can identify regions in the cutting parameter space where loss of stability leads to much greater amplitude self-interrupted motions than in some other regions.