941 resultados para differentially expressed


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the young. In contrast, the differentiation between males and females generally depends upon whether eggs are fertilized, with fertilized (diploid) eggs giving rise to females and unfertilized (haploid) eggs giving rise to males. To obtain a comprehensive picture of the relative contributions of gender (sex), caste, developmental stage, and species divergence to gene expression evolution, we investigated gene expression patterns in pupal and adult queens, workers, and males of two species of fire ants, Solenopsis invicta and S. richteri. Microarray hybridizations revealed that variation in gene expression profiles is influenced more by developmental stage than by caste membership, sex, or species identity. The second major contributor to variation in gene expression was the combination of sex and caste. Although workers and queens share equivalent diploid nuclear genomes, they have highly distinctive patterns of gene expression in both the pupal and the adult stages, as might be expected given their extraordinary level of phenotypic differentiation. Overall, the difference in the proportion of differentially expressed genes was greater between workers and males than between workers and queens or queens and males, consistent with the fact that workers and males share neither gender nor reproductive capability. Moreover, between-species comparisons revealed that the greatest difference in gene expression patterns occurred in adult workers, a finding consistent with the fact that adult workers most directly experience the distinct external environments characterizing the different habitats occupied by the two species. Thus, much of the evolution of gene expression in ants may occur in the worker caste, despite the fact that these individuals are largely or completely sterile. Analyses of gene expression evolution revealed a combination of positive selection and relaxation of stabilizing selection as important factors driving the evolution of such genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to identify and isolate genes that are differentially expressed in four selected cotton (Gossypium hirsutum L.) genotypes contrasting according to their tolerance to water deficit. The genotypes studied were Siokra L-23, Stoneville 506, CS 50 and T-1521. Physiological, morphological and developmental changes that confer drought tolerance in plants must have a molecular genetic basis. To identify and isolate the genes, the mRNA Differential Display (DD) technique was used. Messenger RNAs differentially expressed during water deficit were identified, isolated, cloned and sequenced. The cloned transcript A12B15-5, a NADP(H) oxidase homologue, was up regulated only during the water deficit stress and only in Siokra L-23, a drought tolerant genotype. Ribonuclease protection assay confirmed that transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to design a novel strategy to detect new targets for anticancer treatments. The rationale was to build Biological Association Networks from differentially expressed genes in drug-resistant cells to identify important nodes within the Networks. These nodes may represent putative targets to attack in cancer therapy, as a way to destabilize the gene network developed by the resistant cells to escape from the drug pressure. As a model we used cells resistant to methotrexate (MTX), an inhibitor of DHFR. Selected node-genes were analyzed at the transcriptional level and from a genotypic point of view. In colon cancer cells, DHFR, the AKR1 family, PKC¿, S100A4, DKK1, and CAV1 were overexpressed while E-cadherin was lost. In breast cancer cells, the UGT1A family was overexpressed, whereas EEF1A1 was overexpressed in pancreatic cells. Interference RNAs directed against these targets sensitized cells towards MTX.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ectodysplasin (Eda), a member of the tumor necrosis factor (Tnf) family, regulates skin appendage morphogenesis via its receptor Edar and transcription factor NF-κB. In humans, inactivating mutations in the Eda pathway components lead to hypohidrotic ectodermal dysplasia (HED), a syndrome characterized by sparse hair, tooth abnormalities, and defects in several cutaneous glands. A corresponding phenotype is observed in Eda-null mice, where failure in the initiation of the first wave of hair follicle development is a hallmark of HED pathogenesis. In an attempt to discover immediate target genes of the Eda/NF-κB pathway, we performed microarray profiling of genes differentially expressed in embryonic skin explants after a short exposure to recombinant Fc-Eda protein. Upregulated genes included components of the Wnt, fibroblast growth factor, transforming growth factor-β, Tnf, and epidermal growth factor families, indicating that Eda modulates multiple signaling pathways implicated in skin appendage development. Surprisingly, we identified two ligands of the chemokine receptor cxcR3, cxcl10 and cxcl11, as new hair-specific transcriptional targets of Eda. Deficiency in cxcR3 resulted in decreased primary hair follicle density but otherwise normal hair development, indicating that chemokine signaling influences the patterning of primary hair placodes only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BackgroundRecently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation.MethodsWe purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA `signature¿ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the `TargetScan¿ and `miRBase¿ bioinformatics programs to identify potential target sites for these microRNAs in the 3¿-UTR of important Treg cell-associated genes.ResultsThe human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo.ConclusionsWe are examining the biological relevance of this `signature¿ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protective immune responses relyon TCR-mediated recognition of antigenspresented by MHC molecules. Tcells directed against tumor antigensare thought to express TCRs of loweraffinity/avidity than pathogen-specificT lymphocytes. An attractivestrategy to improve anti-tumor T cellresponses is to adoptively transferCD8+ T cells engineered with TCRsof optimized affinity. However, themechanisms that control optimal Tcell activation and responsiveness remainpoorly defined. We aim at characterizingTCR-pMHC binding parametersand downstream signalingevents that regulate T cell functionalityby using an in silico designedpanel of tumor antigen-specific TCRsof incremental affinity for pMHC(Kd100 M- 15 nM).We found that optimalT cell responses (cytokine secretionand target cell killing) occurredwithin a well-defined window ofTCR-pMHC binding affinity (5 M-1 M), while drastic functional declinewas detected in T cells expressingvery low and very high TCRaffinities,which was not caused by any increasein apoptosis. Whole-genomemicroarray analysis revealed that Tcells with optimal TCR affinitieshighly up-regulated transcription ofgenes typical of T cell activation (i.e.IFN-, NF-B and TNFR), while reducedexpression was detected in Tcells of very low or very high TCR affinity.Strikingly, hierarchical clusteringshowed that the latter two variantsclustered together with the un-stimulatedcontrol Tcells.Yet, despite commonclustering, several genes seemedto be differentially expressed, suggestingthat the mechanisms involvedin this "unresponsiveness state" maydiffer between those two variants. Finally,calcium influx assays also demonstratedattenuated responses in Tcells of very high TCR affinity. Ourresults indicate that optimal T cellfunction is tightly controlled within adefinedTCRaffinity window throughvery proximal TCR-mediated mechanisms,possibly at the TCR-pMHCbinding interface. Uncovering themechanisms regulating optimal/maximalT cell function is essential to understandand promote therapeutic designlike adoptive T cell therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity is an excess of fat mass. Fat mass is an energy depot but also an endocrine organ. A deregulation of the sympathetic nervous system (SNS) might produce obesity. Stress exaggerates diet-induced obesity. After stress, SNS fibers release neuropeptide Y (NPY) which directly increases visceral fat mass producing a metabolic syndrome (MbS)-like phenotype. Adrenergic receptors are the main regulators of lipolysis. In severe obesity, we demonstrated that the adrenergic receptor subtypes are differentially expressed in different fat depots. Liver and visceral fat share a common sympathetic pathway, which might explain the low-grade inflammation which simultaneously occurs in liver and fat of the obese with MbS. The neuroendocrine melanocortinergic system and gastric ghrelin are also greatly deregulated in obesity. A specific mutation in the type 4 melanocortin receptor induces early obesity onset, hyperphagia and insulin-resistance. Nonetheless, it was recently discovered that a mutation in the prohormone convertase 1/3 simultaneously produces severe gastrointestinal dysfunctions and obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill.), during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH) technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. RESULTS: We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. CONCLUSIONS: These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome.