967 resultados para detectors
Resumo:
El treball presentat ve motivat per la necessitat d’instal•lació d’un pàrquing públic i privat de nova construcció a nivell d’il•luminació i ventilació. Per poder satisfer les necessitats del nostre client d’estalvi energètic i confort en l’edifici es decideix d’implementar una instal•lació immòtica que és l’aplicació de tècniques de gestió i control automatitzat a un edifici terciari amb bus de comunicació KNX/EIB. Per a la il•luminació s’han utilitzat fluorescents amb balasts DALI, que permeten la seva regulació i control, per així poder adequar en tot moment l’encesa i intensitat de llum d’aquests. En quant a la ventilació s’han utilitzat variadors de freqüència per també poder optimitzar el funcionament dels ventiladors podent posar-los en marxa quan realment sigui necessari i a la potència que calgui. Per enllaçar tots els elements de la instal•lació, detectors i actuadors, sorgeig la necessitat d’implementar xarxes de comunicació com el KNX/EIB, DALI, Modbus i Ethernet. Per gestionar variables, comunicacions i controlar elements, s´hi han implementen dos autòmats programables a més d’un PC integrat per la visualització i el control del pàrquing. S’ha aconseguit de realitzar un pàrquing totalment automàtic on no és necessaria l’actuació dels operaris i amb les principals càrregues elèctriques totalment regulables en potència. S’ha comprovat que la instal•lació funciona per sota de la potència nominal de les càrregues amb l’estalvi energètic que això suposa.
Resumo:
Contamination of weather radar echoes by anomalous propagation (anaprop) mechanisms remains a serious issue in quality control of radar precipitation estimates. Although significant progress has been made identifying clutter due to anaprop there is no unique method that solves the question of data reliability without removing genuine data. The work described here relates to the development of a software application that uses a numerical weather prediction (NWP) model to obtain the temperature, humidity and pressure fields to calculate the three dimensional structure of the atmospheric refractive index structure, from which a physically based prediction of the incidence of clutter can be made. This technique can be used in conjunction with existing methods for clutter removal by modifying parameters of detectors or filters according to the physical evidence for anomalous propagation conditions. The parabolic equation method (PEM) is a well established technique for solving the equations for beam propagation in a non-uniformly stratified atmosphere, but although intrinsically very efficient, is not sufficiently fast to be practicable for near real-time modelling of clutter over the entire area observed by a typical weather radar. We demonstrate a fast hybrid PEM technique that is capable of providing acceptable results in conjunction with a high-resolution terrain elevation model, using a standard desktop personal computer. We discuss the performance of the method and approaches for the improvement of the model profiles in the lowest levels of the troposphere.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
An ab initio study of the adsorption processes on NOx compounds on (1 1 0) SnO2 surface is presented with the aim of providing theoretical hints for the development of improved NOx gas sensors. From first principles calculations (DFT¿GGA approximation), the most relevant NO and NO2 adsorption processes are analyzed by means of the estimation of their adsorption energies. The resulting values and the developed model are also corroborated with experimental desorption temperatures for NO and NO2, allowing us to explain the temperature-programmed desorption experiments. The interference of the SO2 poisoning agent on the studied processes is discussed and the adsorption site blocking consequences on sensing response are analyzed.
Resumo:
A bidimensional array based on single-photon avalanche diodes for triggered imaging systems is presented. The diodes are operated in the gated mode of acquisition to reduce the probability to detect noise counts interfering with photon arrival events. In addition, low reverse bias overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process gets rid of afterpulses and offers a reduced dark count probability by applying the proposed modes of operation. The detector exhibits a dynamic range of 15 bits with short gated"on" periods of 10ns and a reverse bias overvoltage of 1.0V.
Resumo:
Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35µm standard technology is also presented in this article.
Resumo:
In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.
Resumo:
WO3 nanocrystalline powders were obtained from tungstic acid following a sol-gel process. Evolution of structural properties with annealing temperature was studied by X-ray diffraction and Raman spectroscopy. These structural properties were compared with those of WO3 nanopowders obtained by the most common process of pyrolysis of ammonium paratungstate, usually used in gas sensors applications. Sol-gel WO3 showed a high sensor response to NO2 and low response to CO and CH4. The response of these sensor devices was compared with that of WO3 obtained from pyrolysis, showing the latter a worse sensor response to NO2. Influence of operating temperature, humidity, and film thickness on NO2 detection was studied in order to improve the sensing conditions to this gas.
Resumo:
Nanocrystalline TiO2 modified with Nb has been produced through the sol-gel technique. Nanopowders have been obtained by means of the hydrolysis of pure alkoxides with deionized water and peptization of the resulting hydrolysate with diluted acid nitric at 100 C. The addition of Nb stabilizes the anatase phase to higher temperatures. XRD spectra of the undoped and the Nb-doped samples show that the undoped sample has been almost totally converted to rutile at 600 C, meanwhile the doped samples present still a low percentage of rutile phase. Nanocrystalline powders stabilized at 600 C with grain sizes of about 17 nm have successfully been synthesized by the addition of Nb with a concentration of 2% at., which appears to be an adequate additive concentration to improve the gas sensor performances, such as it is suggested by the catalytic conversion efficiency experiments performed from FTIR measurements. FTIR absorbance spectra show that catalytic conversion of CO occurs at lower temperatures when niobium is introduced. The electrical response of the films to different concentrations of CO and ethanol has been monitored in dry and wet environments in order to test the influence of humidity in the sensor response. The addition of Nb decreases the working temperature and increases the stability of the layers. Also, large enhancement of the response time is obtained even with lower working temperatures. Moreover, humidity effects on the gas sensor response toward CO and ethanol are less important in Nb-doped samples than in the undoped ones.
Resumo:
Defects in SnO2 nanowires have been studied by cathodoluminescence, and the obtained spectra have been compared with those measured on SnO2 nanocrystals of different sizes in order to reveal information about point defects not determined by other characterization techniques. Dependence of the luminescence bands on the thermal treatment temperatures and pre-treatment conditions have been determined pointing out their possible relation, due to the used treatment conditions, with the oxygen vacancy concentration. To explain these cathodoluminescence spectra and their behavior, a model based on first-principles calculations of the surface oxygen vacancies in the different crystallographic directions is proposed for corroborating the existence of surface state bands localized at energy values compatible with the found cathodoluminescence bands and with the gas sensing mechanisms. CL bands centered at 1.90 and 2.20 eV are attributed to the surface oxygen vacancies 100° coordinated with tin atoms, whereas CL bands centered at 2.37 and 2.75 eV are related to the surface oxygen vacancies 130° coordinated. This combined process of cathodoluminescence and ab initio calculations is shown to be a powerful tool for nanowire defect analysis.
Resumo:
A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.
Resumo:
Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.
Resumo:
The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different design methodologies were used in the conception of the complete circuit, high-level synthesis tools and methodologies were crucial in speeding up the whole design cycle, enhancing reusability for future applications and producing a flexible and robust component.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.