906 resultados para consumo energético
Resumo:
La presente tesis doctoral aborda el estudio de un nuevo material mineral, compuesto principalmente por una matriz de yeso (proveniente de un conglomerante industrial basado en sulfato de calcio multifase) y partículas de aerogel de sílice hidrófugo mesoporoso, compatibilizadas mediante un surfactante polimérico, debido a su alto carácter hidrófugo. La investigación se centra en conocer los factores que influyen en las propiedades mecánicas y conductividad térmica del material compuesto generado. Este estudio pretende contribuir al conocimiento sobre el desarrollo de nuevos morteros de elevado aislamiento térmico que puedan ser utilizados en la rehabilitación energética de edificios de viviendas existentes, debido a que estos representan gran parte del consumo energético del parque de viviendas de España, aunque también a nivel internacional. De los materiales utilizados para desarrollar los morteros estudiados, el yeso, además de ser un material muy abundante, especialmente en España, requiere una menor cantidad de energía para la fabricación de un conglomerante (debido a una menor temperatura de fabricación), en comparación con el cemento o la cal, por lo que presenta una menor huella de carbono que estos últimos. Por otro lado, el aerogel de sílice hidrófugo mesoporoso es, de acuerdo con la documentación disponible, el material que posee actualmente la mayor capacidad de aislamiento térmico en el mercado. El desarrollo de nuevos morteros minerales con una capacidad de aislamiento térmico mayor que los materiales aislantes utilizados tradicionalmente, tiene una aplicación relevante en los casos de rehabilitación energética de edificios históricos y patrimoniales, en los que se requiere la aplicación del aislamiento por el interior de la fachada, ya que este tipo de soluciones tienen el inconveniente de reducir el espacio habitable de las áreas involucradas, especialmente en zonas climáticas en las que el aislamiento térmico puede suponer un espesor considerable, por lo que es ideal utilizar materiales de altas prestaciones de aislamiento térmico capaces de aportar el mismo nivel de aislamiento (o incluso mayor), pero en un espesor considerablemente menor. La investigación se desarrolla en tres etapas: bibliográfica, experimental y de simulación. La primera etapa, parte del estudio de la bibliografía existente, relacionada con materiales aislantes, incluyendo soluciones basadas, tanto en morteros aislantes, como en paneles de aislamiento térmico. La segunda, de carácter experimental, se centra en estudiar la influencia de la microestrucrura y macroestructura, del nuevo material mineral, en las propiedades físicas elementales, mecánicas y conductividad térmica del compuesto. La tercera etapa, mediante una simulación del consumo energético, consiste en cuantificar teóricamente el potencial ahorro energético que puede aportar este material en un caso de rehabilitación energética en particular. La investigación experimental se centró principalmente en conocer los factores principales que influyen en las propiedades mecánicas y conductividad térmica de los materiales compuestos minerales desarrollados en esta tesis. Para ello, se llevó a cabo una caracterización de los materiales de estudio, así como el desarrollo de distintas muestras de ensayo, de tal forma que se pudo estudiar, tanto la hidratación del yeso en los compuestos, como su posterior microestructura y macroestructura, aspectos fundamentales para el entendimiento de las propiedades mecánicas y conductividad térmica del compuesto aislante. De este modo, se pudieron conocer y cuantificar, los factores que influyen en las propiedades estudiadas, aportando una base de conocimiento y entendimiento de este tipo de compuestos minerales con aerogel de sílice hidrófugo, no existiendo estudios publicados hasta el momento de finalización de esta tesis, con la aproximación al material propuesta en este estudio, ni con yeso (basado en sulfato de calcio multifase), ni con otro tipo de conglomerantes. Particularmente, se determinó la influencia que tiene la incorporación de partículas de aerogel de sílice hidrófugo, en grandes proporciones en volumen, en un compuesto mineral basado en distintas fases de sulfato de calcio. No obstante, para llevar a cabo las mezclas, fue necesario utilizar un surfactante para compatibilizar este tipo de partículas, con el conglomerante basado en agua. El uso de este tipo de aditivos tiene una influencia, no solo en el aerogel, sino en las propiedades del compuesto en general, dependiendo de su concentración, por lo que se establecieron dos porcentajes de adición: la primera, determinada a partir de la cantidad mínima necesaria para compatibilizar las mezclas (0,1% del agua de amasado), y la segunda, como límite superior, la concentración utilizada habitualmente a nivel industrial para estabilizar burbujas de aire en hormigones espumados (5%). El surfactante utilizado mostró la capacidad de modificar la superficie del aerogel, cambiando el comportamiento de las partículas frente al agua, permitiendo una invasión parcial de su estructura porosa, por parte del agua de amasado. Este comportamiento supone un aumento muy importante en la relación agua/yeso, afectando el hábito cristalino e influenciando negativamente las propiedades mecánicas de la matriz de yeso, presentando un efecto aún notable a mayor concentración de surfactante (5%). En cuanto a las propiedades finales alcanzadas, fue posible lograr un compuesto mineral ultraligero (200 kg/m3), con alrededor de un 60% de aerogel en volumen y de alta capacidad aislante (0,028 W/m•K), presentando una conductividad térmica notablemente menor que los morteros aislantes del mercado, e incluso también menor que la de los aislantes tradicionales basado en las lanas minerales o EPS; no obstante, con la limitante de presentar bajas propiedades mecánicas, condicionando su posible aplicación futura. Entre los factores principales relacionados con las propiedades mecánicas, se encontró que estas dependen exponencialmente del volumen de yeso en el compuesto; no obstante, factores de segundo orden, como el grado de hidratación, o una mejor distribución del conglomerante entre las partículas de aerogel, debido al aumento de la superficie específica del polvo mineral, pueden aumentar las propiedades mecánicas entre el doble y el triple, dependiendo del volumen de aerogel en cuestión. Además, se encontró que el aerogel, en conjunto con el surfactante, es capaz de introducir una gran cantidad de aire (0,70 m3 por cada m3 de aerogel), que unido al agua evaporada (no consumida por el conglomerante durante la hidratación), el volumen de aire total alcanza, generalmente, un 40%, independientemente de la cantidad de aerogel en la mezcla. De este modo, el aire introducido en la matriz desplaza las proporciones en volumen del aerogel y del yeso, disminuyendo, tanto las propiedades mecánicas, como la capacidad aislante de compuesto mineral. Por otro lado, la conductividad térmica mostró tener una dependencia directa de la contribución de las tres fases principales en el compuesto: yeso, aerogel y aire ocluido. De este modo, se pudo desarrollar un modelo matemático, adaptado de uno existente, capaz de calcular, con bastante precisión, la relación de los tres componentes mencionados, en la conductividad térmica de los compuestos, para el rango de volúmenes y materiales utilizados en esta tesis. Finalmente, la simulación del consumo energético realizada a una vivienda típica de España, de los años 1900 a 1959 (basada en muros de ladrillo macizo), para las zonas climáticas estudiadas (A, D y E), permitió observar el potencial ahorro energético que puede aportar este material, dependiendo de su espesor, como aislamiento interior de los muros de fachada. Particularmente, para la zona A, se determinó un espesor óptimo de 1 cm, mientras que para la zona D y E, 3,5 y 3,9 cm respectivamente. En este sentido, el nuevo material estudiado es capaz de disminuir, entre un 35% y un 80%, el espesor de la capa aislante, en comparación con paneles de lana de roca o los morteros minerales de mayor capacidad aislante del mercado español respectivamente. ABSTRACT The present doctoral thesis studies a new mineral-based composite material, composed by a gypsum matrix (based on an industrial multiphase gypsum binder) and mesoporous hydrophobic silica aerogel particles, compatibilized with a polymeric surfactant due to the high hydrophobic character of the insulating particles. This study pretends to contribute to the development of new composite insulating materials that could be used in energy renovation of existing dwellings, in order to reduce their high energy consumption, as they represent a great part of the total energy consumed in Spain, but also internationally. Between the materials used to develop de studied insulating mortars, gypsum, besides being an abundant material, especially in Spain, requires less energy for the manufacture of a mineral binder (due to lower manufacturing temperatures), compared to lime or cement, thus presenting lower carbon footprint. In other hand, the hydrophobic mesoporous silica aerogel, is, according to the existing references, the material with the highest know insulating capacity in the market. The development of new mineral mortars with higher thermal insulation capacity than traditional insulating materials, presents a relevant application in energy retrofitting of historic and cultural heritage buildings, in which implies that the insulating material should be installed as an internal layer, rather than as an external insulating system. This type of solution involves a reduced internal useful area, especially in climatic zones where the demand for thermal insulation is higher, and so the insulating layer thickness, being idealistic to use materials with very high insulating properties, in order to reach same insulating level (or higher), but in lower thickness than the provided by traditional insulating materials. This research is developed in three main stages: bibliographic, experimental and simulation. The first stage starts by studying the existing references regarding thermally insulating materials, including existing insulating mortars and insulating panels. The second stage, mainly experimental, is centered in the study of the the influence of the microstructure and macrostructure in the physical and mechanical properties, and also in the thermal conductivity of the new mineral-based material. The thirds stage, through energy simulation, consists in theoretically quantifying the energy savings potential that can provide this type of insulating material, in a particular energy retrofitting case study. The experimental research is mainly focused in the study of the factors that influence the mechanical properties and the thermal conductivity of the thermal insulating mineral composites developed in this thesis. For this, the characterization of the studied materials has been performed, as well as the development of several experimental samples, in order to study the hydration of the mineral binder within the composites, but also the final microstructure and macrostructure, fundamental aspects for the understanding of the composite’s mechanical and insulating properties. Thus, is was possible to determine and quantify the factors that influence the studied material properties, providing a knowledge base and understanding of mineral composites that comprises mesoporous hydrophobic silica aerogel particles, being the first study up to date regarding the specific approach of the present study, regarding not just multiphase calcium sulfate plaster, but also other mineral binders. Particularly, the influence of the incorporation of hydrophobic silica aerogel particles, in high volume ratios into a mineral compound, based on different phases of calcium sulfate has been determined. However, to perform mixing, it is necessary to use a surfactant in order to compatibilize these particles with the water-based mineral binder. The use of such additives has an influence, not only in the aerogel, but the overall properties of the compound, so two different surfactant concentration has been studied: the first, the minimum amount of surfactant (used in this thesis) in order to develop the slurries (0.1% concentration of the mixing water), and the second, as the upper limit, the concentration usually used industrially to stabilize air bubbles in foamed concrete (5%). One of the side effects of using such additive, was the modification of the aerogel particles, by changing their behavior in respect to water, generating a partial invasion of the aerogel’s porous structure, by the mixing water. This behavior produces a very important increase in water/binder ratios, affecting the crystal habit and negatively influencing the mechanical properties of the gypsum matrix. This effect further increased when a higher concentration of surfactant (5%) is used. Regarding final materials properties, it was possible to achieve an ultra-lightweight mineral composite (200 kg/m3), with around 60% by volume of aerogel, presenting a very high insulating capacity (0.028 W/m•K), a noticeable lower thermal conductivity compared to the insulating mortars and traditional thermal insulating panels on the market, such as mineral wool or EPS; however, the limiting factor for future’s material application in buildings, is related to the very low mechanical properties achieved. Among the main factors related to the mechanical properties, it has been found an exponential correlation to the volume of gypsum in the composite. However, second-order factors such as the degree of hydration, or a better distribution of the binder between the aerogel particles, due to the increased surface area of the mineral powder, can increase the mechanical properties between two to three times, depending aerogel volume involved. In addition, it was found that the aerogel, together with the surfactant, is able to entrain a large amount of air volume (around 0.70 m3 per m3 of aerogel), which together with the evaporated water (not consumed by the binder during hydration), can reach generally around 40% of entrained air within the gypsum matrix, regardless of the amount of aerogel in the mixture. Thus, the entrained air into the matrix displaces the volume proportions of the aerogel and gypsum, reducing both mechanical and insulating properties of the mineral composite. On the other hand, it has been observed a direct contribution of three main phases into the thermal conductivity of the composite: gypsum, aerogel and entrained air. Thus, it was possible to develop a mathematical model (adapted from an existing one), capable of calculating quite accurate the thermal conductivity of such mineral composites, from the ratio these three components and for the range of volumes and materials used in this thesis. Finally, the energy simulation performed to a typical Spanish dwelling, from the years 1900 to 1959 (mainly constructed with massive clay bricks), within three climatic zones of Spain (A, D and E), showed the energy savings potential that can provide this type of insulating material, depending on the thickness of the applied layer. Particularly, for the climatic A zone, it has been found an optimal layer thickness of 1 cm, while for zone D and E, 3.5 and 3.9 cm respectively. In this manner, the new studied materials is capable of decreasing the thickness of the insulating layer by 35% and 80%, compared with rock wool panels or mineral mortars with the highest insulating performance of the Spanish market respectively.
Resumo:
O aumento no consumo energético e a crescente preocupação ambiental frente à emissão de gases poluentes criam um apelo mundial favorável para pesquisas de novas tecnologias não poluentes de fontes de energia. Baterias recarregáveis de lítio-ar em solventes não aquosos possuem uma alta densidade de energia teórica (5200 Wh kg-1), o que as tornam promissoras para aplicação em dispositivos estacionários e em veículos elétricos. Entretanto, muitos problemas relacionados ao cátodo necessitam ser contornados para permitir a aplicação desta tecnologia, por exemplo, a baixa reversibilidade das reações, baixa potência e instabilidades dos materiais empregados nos eletrodos e dos solventes eletrolíticos. Assim, neste trabalho um modelo cinético foi empregado para os dados experimentais de espectroscopia de impedância eletroquímica, para a obtenção das constantes cinéticas das etapas elementares do mecanismo da reação de redução de oxigênio (RRO), o que permitiu investigar a influência de parâmetros como o tipo e tamanho de partícula do eletrocatalisador, o papel do solvente utilizado na RRO e compreender melhor as reações ocorridas no cátodo dessa bateria. A investigação inicial se deu com a utilização de sistemas menos complexos como uma folha de platina ou eletrodo de carbono vítreo como eletrodos de trabalho em 1,2-dimetoxietano (DME)/perclorato de lítio (LiClO4). A seguir, sistemas complexos com a presença de nanopartículas de carbono favoreceu o processo de adsorção das moléculas de oxigênio e aumentou ligeiramente (uma ordem de magnitude) a etapa de formação de superóxido de lítio (etapa determinante de reação) quando comparada com os eletrodos de platina e carbono vítreo, atribuída à presença dos grupos laterais mediando à transferência eletrônica para as moléculas de oxigênio. No entanto, foi observada uma rápida passivação da superfície eletrocatalítica através da formação de filmes finos de Li2O2 e Li2CO3 aumentando o sobrepotencial da bateria durante a carga (diferença de potencial entre a carga e descarga > 1 V). Adicionalmente, a incorporação das nanopartículas de platina (Ptnp), ao invés da folha de platina, resultou no aumento da constante cinética da etapa determinante da reação em duas ordens de magnitude, o qual pode ser atribuído a uma mudança das propriedades eletrônicas na banda d metálica em função do tamanho nanométrico das partículas, e estas modificações contribuíram para uma melhor eficiência energética quando comparado ao sistema sem a presença de eletrocatalisador. Entretanto, as Ptnp se mostraram não específicas para a RRO, catalisando as reações de degradação do solvente eletrolítico e diminuindo rapidamente a eficiência energética do dispositivo prático, devido ao acúmulo de material no eletrodo. O emprego de líquido iônico como solvente eletrolítico, ao invés de DME, promoveu uma maior estabilização do intermediário superóxido formado na primeira etapa de transferência eletrônica, devido à interação com os cátions do líquido iônico em solução, o qual resultou em um valor de constante cinética da formação do superóxido de três ordens de magnitude maior que o obtido com o mesmo eletrodo de carbono vítreo em DME, além de diminuir as reações de degradação do solvente. Estes fatores podem contribuir para uma maior potência e ciclabilidade da bateria de lítio-ar operando com líquidos iônicos.
Resumo:
Os contêineres metálicos foram desenvolvidos para a utilização no setor de logística e transporte, mas por sua escala adaptável à das edificações e pela mobilidade e praticidade de instalação, tiveram sua utilização apropriada também pelo setor da construção civil. Essas instalações possuem diversas qualidades ambientalmente amigáveis, mas seu aspecto térmico é extremamente insuficiente: sem isolamento térmico, demandam alta carga térmica de refrigeração e aquecimento, no verão e inverno, respectivamente e, consequentemente, um alto consumo energético. Tal característica foi crucial para que se determinassem como objetivos da presente pesquisa investigar o comportamento térmico dessas construções metálicas, avaliar seus parâmetros de desempenho, conforto e estresse térmicos, por meio de uma ampla coleta de dados experimentais. O experimento com duração de um ano - contou com três tipologias de contêiner em escala real, sendo o primeiro em aço Tipo X sem isolamento térmico, o segundo com um isolamento térmico para o fenômeno da condução e o terceiro com isolamento térmico para o fenômeno da radiação. Os diferentes tipos de tratamentos térmicos proporcionaram melhorias à envoltória dos contêineres, chegando a uma diferença nas temperaturas internas de até 9 °C. Constatou-se a extrema necessidade de adequação do tipo de isolamento térmico dos contêineres ao uso a que tais instalações se destinam escritório ou alojamento, no caso dos canteiros de obras para que as características da envoltória minimizem de fato a demanda ou mesmo atinjam a eliminação da necessidade de condicionamento artificial.
Resumo:
No presente trabalho foram avaliados processos alternativos de dessalinização visando a recuperação e reuso da água contida em salmouras concentradas, sendo o processo de cristalização assistida por destilação por membranas (MDC) investigado com profundidade. Foi desenvolvido um modelo diferencial para o processo de destilação por membranas por contato direto (DCMD), contemplando métodos termodinâmicos rigorosos para sistemas aquosos de eletrólitos fortes, bem como mecanismos de transferência de calor e massa e efeitos de polarização de temperatura e concentração característicos deste processo de separação. Com base em simulações realizadas a partir do modelo matemático assim desenvolvido, foram investigados os principais parâmetros que influenciam o projeto de um módulo de membranas para DCMD. O modelo foi posteriormente estendido com equações de balanço de massa e energia adicionais para incluir a operação de cristalização e desta forma representar o processo de MDC. De posse dos resultados das simulações e do modelo estendido, foi desenvolvido um método hierárquico para o projeto de processos de MDC, com o objetivo de conferir características de rastreabilidade e repetibilidade a esta atividade. Ainda a partir do modelo MDC foram discutidos aspectos importantes em MDC como a possibilidade de nucleação e crescimento de cristais sobre a superfície das membranas, bem como o comportamento do processo com sais com diferentes características de solubilidade e largura da zona metaestável. Verificou-se que para sais cuja solubilidade varia muito pouco com a temperatura e que possuem zona metaestável com pequena largura, caso do NaCl, a operação com resfriamento no cristalizador não é viável pois aumenta excessivamente o consumo energético do processo, sendo nesses casos preferível a operação \"isotérmica\" - sem resfriamento no cristalizador - e o convívio com a possibilidade de nucleação no interior do módulo. No extremo oposto, observou-se que para sais com grande variabilidade da solubilidade com a temperatura, um pequeno resfriamento no cristalizador é suficiente para garantir condições de subsaturação no interior do módulo, sem grande ônus energético para o processo. No caso de sais com pequena variabilidade da solubilidade com a temperatura, mas com largura da zona metaestável elevada, existe certo ônus energético para a operação com resfriamento do cristalizador, porém não tão acentuado como no caso de sais com zona metaestável estreita. Foi proposto um fluxograma alternativo para o processo de MDC, onde foi introduzido um circuito de pré-concentração da alimentação antes do circuito de cristalização, para o caso de alimentação com soluções muito diluídas. Este esquema proporcionou um aumento do fluxo permeado global do processo e consequentemente uma redução na área total de membrana requerida. Verificou-se que através do processo com préconcentração da alimentação de 5% até 10% em massa - no caso de dessalinização de uma solução de NaCl - foi possível reduzir-se a área total da membrana em 27,1% e o consumo energético específico do processo em 10,6%, quando comparado ao processo sem pré-concentração. Foram desenvolvidas ferramentas úteis para o projeto de processos de dessalinização por MDC em escala industrial.
Resumo:
O cenário competitivo e globalizado em que as empresas estão inseridas, sobretudo a partir do século XXI, associados a ciclos de vida cada vez menores dos produtos, rigorosos requisitos de qualidade, além de políticas de preservação do meio ambiente, com redução de consumo energético e de recursos hídricos, somadas às exigências legais de melhores condições de trabalho, resultaram em uma quebra de paradigma nos processos produtivos até então concebidos. Como solução a este novo cenário produtivo pode-se citar o extenso uso da automação industrial, fato que resultou em sistemas cada vez mais complexos, tanto do ponto de vista estrutural, em função do elevado número de componentes, quanto da complexidade dos sistemas de controle. A previsibilidade de todos os estados possíveis do sistema torna-se praticamente impossível. Dentre os estados possíveis pode-se citar os estados de falha que, dependendo da severidade do efeito associado à sua ocorrência, podem resultar em sérios danos para o homem, o meio ambiente e às próprias instalações, caso não sejam corretamente diagnosticados e tratados. Fatos recentes de catástrofes relacionadas à sistemas produtivos revelam a necessidade de se implementar medidas para prevenir e para mitigar os efeitos da ocorrência de falhas, com o objetivo de se evitar a ocorrência de catástrofes. De acordo com especialistas, os Sistemas Instrumentados de Segurança SIS, referenciados em normas como a IEC 61508 e IEC 61511, são uma solução para este tipo de problema. Trabalhos publicados tratam de métodos para a implementação de camadas SIS de prevenção, porém com escassez de trabalhos para camadas SIS de mitigação. Em função do desconhecimento da dinâmica do sistema em estado de falha, técnicas tradicionais de modelagem tornam-se inviáveis. Neste caso, o uso de inteligência artificial, como por exemplo a lógica fuzzy, pode se tornar uma solução para o desenvolvimento do algoritmo de controle, associadas a ferramentas de edição, modelagem e geração dos códigos de controle. A proposta deste trabalho é apresentar uma sistemática para a implementação de um sistema de controle para a mitigação de falhas críticas em sistemas produtivos, com referência às normas IEC 61508/61511, com ação antecipativa à ocorrência de catástrofes.
Resumo:
Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
Resumo:
Tese de mestrado integrado, Engenharia da Energia e do Ambiente, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
De acordo com proposta de 23 de Janeiro de 2008, relativa aos esforços a realizar pelos Estados-Membros da CE, o Conselho Europeu fixou dois objectivos principais ”reduzir, até 2020, as emissões de gases com efeito de estufa em pelo menos 20%” e “elevar para 20% a parte das energias renováveis no consumo energético da UE até 2020”. Enquadrando estes objectivos na actual legislação Portuguesa para as energias renováveis, em particular para as Unidades de Produção para Autoconsumo (UPAC) e considerando a energia solar que temos disponível ser completamente gratuita, resulta no objetivo deste trabalho, que se propõem contribuir para atualizar, consciencializar e reforçar o compromisso que temos para atingir estas metas assim como assegurar o futuro do nosso Planeta. Estes objectivos traçados pelo Conselho Europeu e legislado pelo governo Português, originou uma elevada procura por licenças de exploração de microprodução, devido às elevadas tarifas de incentivo para venda de eletricidade e o rápido retorno do capital investido. Neste contexto e nomeadamente com a tecnologia solar fotovoltaica, as consecutivas alterações na legislação desta matéria, foram convergindo para o seu autoconsumo através de novas soluções de produção de energia descentralizada e de inovação tecnológica, permitindo ainda a existência de ligação à rede elétrica de serviço público (RESP). Apesar da anterior legislação de Microprodução estabelecida e atualizada pelo Decreto-Lei n.º 363/2007, de 2 de Novembro [1], alterado pelo Decreto-Lei n.º 118-A/2010, de 25 de Outubro, [2] e pelo Decreto-Lei n.º 25/2013, de 19 de Fevereiro, [3] referir que o distribuidor era obrigado a comprar toda a energia produzida pelo consumidor, com o atual regime, a pequena produção passa a beneficiar de um enquadramento legal único, de acordo com o Decreto-Lei n.º 153/2014 de 20 de outubro, em que incentiva o autoconsumo da energia necessária para o seu consumo diário, sendo a restante não utilizada, possível de ser injetada na rede eléctrica (RESP).
Resumo:
Os edifícios de balanço energético nulo (NZEB - Net-Zero Energy Building) e/ou quase nulo (nZEB), têm vindo a ganhar crescente atenção desde a publicação da diretiva europeia 2010/31/EU [15]. Em Portugal, com a introdução do Decreto-Lei n.º118/2013, dá o primeiro passo para os edifícios com necessidades quase nulas de energia. Os novos edifícios licenciados após 31 dezembro de 2020, ou após 31 de dezembro de 2018 no caso de edifícios públicos, serão edifícios com necessidades quase nulas de energia. O objetivo do trabalho descrito neste artigo consiste na aplicação do conceito ”Net Zero Energy Building”, ao edifício existente do Instituto Superior Politécnico Gaya (ISPGaya), em Vila Nova de Gaia, com o intuito de analisar a viabilidade de otimização de energia e a metodologia deste conceito ao edifício, com recurso a ferramentas de simulação. Neste trabalho efetuámos uma simulação energética do edifício, através do DesignBuilder®, que servirá como termo de comparação para outras simulações. Serão delineadas as especificações a implementar no edifício por forma a ser considerado Net Zero Energy Building, com alterações na simulação do mesmo de acordo com as novas especificações. Por último, será feita a comparação técnica, financeira e ambiental da solução NZEB encontrada. Através das várias simulações energéticas ao edifício, conclui-se que é possível baixar as necessidades energéticas do edifício através de medidas de eficiência energética, em especial na iluminação e que os resultados obtidos, apesar de ser viável a implementação do conceito Net Zero Energy Building, traduzem um esforço financeiro e algumas condicionantes para a sua concretização.
Resumo:
Actually, Brazil is one of the larger fruit producer worldwide, with most of its production being consumed in nature way or either as juice or pulp. It is important to highlig ht in the fruit productive chain there are a lot lose due mainly to climate reasons, as well as storage, transportation, season, market, etc. It is known that in the pulp and fruit processing industy a yield of 50% (in mass) is usually obtained, with the other part discarded as waste. However, since most this waste has a high nutrient content it can be used to generate added - value products. In this case, drying plays an important role as an alternative process in order to improve these wastes generated by the fruit industry. However, despite the advantage of using this technique in order to improve such wastes, issues as a higher power demand as well as the thermal efficiency limitation should be addressed. Therefore, the control of the main variables in t his drying process is quite important in order to obtain operational conditions to produce a final product with the target specification as well as with a lower power cost. M athematical models can be applied to this process as a tool in order to optimize t he best conditions. The main aim of this work was to evaluate the drying behaviour of a guava industrial pulp waste using a batch system with a convective - tray dryer both experimentally and using mathematical modeling. In the experimental study , the dryin g carried out using a group of trays as well as the power consume were assayed as response to the effects of operational conditions (temperature, drying air flow rate and solid mass). Obtained results allowed observing the most significant variables in the process. On the other hand, the phenomenological mathematical model was validated and allowed to follow the moisture profile as well as the temperature in the solid and gas phases in every tray. Simulation results showed the most favorable procedure to o btain the minimum processing time as well as the lower power demand.
Resumo:
This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.
Resumo:
Textile industry has been a cause of environmental pollution, mainly due to the generation of large volumes of waste containing high organic loading and intense color. In this context, this study evaluated the electrochemical degradation of synthetic effluents from textile industry containing Methylene Blue (AM) dye, using Ti/IrO2-Ta2O5 and Ti/Pt anodes, by direct and indirect (active chlorine) electrooxidation. We evaluated the influence of applied current density (20, 40 and 60 mA/cm2 ), and the presence of different concentrations of electrolyte (NaCl and Na2SO4), as well as the neutral and alkaline pH media. The electrochemical treatment was conducted in a continuous flow reactor, in which the electrolysis time of the AM 100 ppm was 6 hours. The performance of electrochemical process was evaluated by UV-vis spectrophotometry, chemical oxygen demand (COD) and total organic carbon (TOC). The results showed that with increasing current density, it was possible to obtain 100 % of color removal at Ti/IrO2-Ta2O5 and Ti/Pt electrodes. Regarding the color removal efficiency, increasing the concentration of electrolyte promotes a higher percentage of removal using 0,02 M Na2SO4 and 0,017 M NaCl. Concerning to the aqueous medium, the best color removal results were obtained in alkaline medium using Ti/Pt. In terms of organic matter, 86 % was achieved in neutral pH medium for Ti/Pt; while a 30 % in an alkaline medium. To understand the electrochemical behavior due to the oxygen evolution reaction, polarization curves were registered, determining that the presence of NaCl in the solution favored the production of active chlorine species. The best results in energy consumption and cost were obtained by applying lower current density (20 mA/cm2 ) in 6 hours of electrolysis.
Resumo:
Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.
Resumo:
This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.
Resumo:
This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.