916 resultados para chromium-doped catalysts
Resumo:
We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate.
Resumo:
In this paper we present results on phosphorous-doped μc-Si:H by catalytic chemical vapour deposition in a reactor with an internal arrangement that does not include a shutter. An incubation phase of around 20 nm seems to be the result of the uncontrolled conditions that take place during the first stages of deposition. The optimal deposition conditions found lead to a material with a dark conductivity of 12.8 S/cm, an activation energy of 0.026 eV and a crystalline fraction of 0.86. These values make the layers suitable to be implemented in solar cells.
Resumo:
In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
There are currently many devices and techniques to quantify trace elements (TEs) in various matrices, but their efficacy is dependent on the digestion methods (DMs) employed in the opening of such matrices which, although "organic", present inorganic components which are difficult to solubilize. This study was carried out to evaluate the recovery of Fe, Zn, Cr, Ni, Cd and Pb contents in samples of composts and cattle, horse, chicken, quail, and swine manures, as well as in sewage sludges and peat. The DMs employed were acid digestion in microwaves with HNO3 (EPA 3051A); nitric-perchloric digestion with HNO3 + HClO4 in a digestion block (NP); dry ashing in a muffle furnace and solubilization of residual ash in nitric acid (MDA); digestion by using aqua regia solution (HCl:HNO3) in the digestion block (AR); and acid digestion with HCl and HNO3 + H2O2 (EPA 3050). The dry ashing method led to the greatest recovery of Cd in organic residues, but the EPA 3050 protocol can be an alternative method for the same purpose. The dry ashing should not be employed to determine the concentration of Cr, Fe, Ni, Pb and Zn in the residues. Higher Cr and Fe contents are recovered when NP and EPA 3050 are employed in the opening of organic matrices. For most of the residues analyzed, AR is the most effective method for recovering Ni. Microwave-assisted digestion methods (EPA3051 and 3050) led to the highest recovery of Pb. The choice of the DM that provides maximum recovery of Zn depends on the organic residue and trace element analyzed.
Resumo:
Epitaxial thin films of Y¿doped SrZrO3 have been grown on MgO(001) by pulsed laser deposition. The deposition process has been performed at temperatures of 1000¿1200¿°C and at an oxygen pressure of 1.5×10¿1 mbar. The samples are characterized by Rutherford backscattering spectrometry/channeling (RBS/C) and x¿ray diffraction (XRD). We found an epitaxial relationship of SrZrO3 (0k0) [101]¿MgO (001) [100]. Good crystalline quality is confirmed by RBS/C minimum yield values of 9% and a FWHM of 0.35° of the XRD rocking curve.
Resumo:
Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr), which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L.) was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS). Over a four-year period, CTS was applied on permanent plots (2 × 5 m) and incorporated in the soil (0-20 cm) at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis). These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.
Resumo:
Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe2+ (AO-BDD-Fe2+) and under UVA irradiation (AO-BDD-Fe2+-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe2+ and EFBDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe2+-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH4 + than NO3- ion, as well as volatile NOx species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe2+-UVA oxamic acid was more slowlydegraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe2+ contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe2+ to Fe3+. Low current densities and Fe2+ contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe2+-UVA method.
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter.
Resumo:
The present study discusses the effect of iron doping in TiO2 thin films deposited by rf sputtering. Iron doping induces a structural transformation from anatase to rutile and electrical measurements indicate that iron acts as an acceptor impurity. Thermoelectric power measurement shows a transition between n-type and p-type electrical conduction for an iron concentration around 0.13 at.%. The highest p-type conductivity at room temperature achieved by iron doping was 10(-6) S m(-1).
Resumo:
We find that even very low Ni doping levels of high-quality Bi2Sr2Ca1Cu2O8 single crystals strongly affect the transition temperature T(c). We also observed that T(c) is not related to the total Ni concentration, but only to that of Ni engaged in NiO-type bonds. By controlling the temperature during crystal growth, one can modify the relative weight of Ni in NiO-type bonds with respect to other configurations-and therefore T(c).
Resumo:
The objective of this work was to evaluate the accuracy of digestion techniques using nitric and perchloric acid at the ratios of 2:1, 3:1, and 4:1 v v-1, in one- or two-step digestion, to estimate chromium contents in cattle feces, using sodium molybdate as a catalyst. Fecal standards containing known chromium contents (0, 2, 4, 6, 8, and 10 g kg-1) were produced from feces of five animals. The chromium content in cattle feces is accurately estimated using digestion techniques based on nitric and perchloric acids, at a 3:1 v v-1 ratio, in one-step digestion, with sodium molybdate as a catalyst.