907 resultados para cell surface receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholesterol is considered indispensible for the recruitment and functioning of integrins in focal adhesions for cell migration. However, the physiological cholesterol pools that control integrin trafficking and focal adhesion assembly remain unclear. Using Niemann Pick Type C1 (NPC) mutant cells, which accumulate Low Density lipoprotein (LDL)-derived cholesterol in late endosomes (LE), several recent studies indicate that LDL-cholesterol has multiple roles in regulating focal adhesion dynamics. Firstly, targeting of endocytosed LDL-cholesterol from LE to focal adhesions controls their formation at the leading edge of migrating cells. Other newly emerging literature suggests that this may be coupled to vesicular transport of integrins, Src kinase and metalloproteases from the LE compartment to focal adhesions. Secondly, our recent work identified LDL-cholesterol as a key factor that determines the distribution and ability of several Soluble NSF Attachment Protein (SNAP) Receptor (SNARE) proteins, key players in vesicle transport, to control integrin trafficking to the cell surface and extracellular matrix (ECM) secretion. Collectively, dietary, genetic and pathological changes in cholesterol metabolism may link with efficiency and speed of integrin and ECM cell surface delivery in metastatic cancer cells. This commentary will summarize how direct and indirect pathways enable LDL-cholesterol to modulate cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mediating endocytosis of extracellular macromolecules; the major mechanism in which cells ingest nutrients, degrade hormones and maintain the protein and lipid compositions of their organelle membrane, the cell surface receptors encounter 'coated pits', migrate continuously from one organelle to another, deliver the 'cargo' and often recycle back to the cell surface. This article is an attempt to give an account of the recent advances in our understanding of the molecular events involved in the 'round trip itinerary' of cell surface receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans infected with Bordetella pertussis, the whooping cough bacterium, show evidences of impaired host defenses. This pathogenic bacterium produces a unique adenylate cyclase toxin (ACT) which enters human phagocytes and catalyzes the unregulated formation of cAMP, hampering important bactericidal functions of these immune cells that eventually cause cell death by apoptosis and/or necrosis. Additionally, ACT permeabilizes cells through pore formation in the target cell membrane. Recently, we demonstrated that ACT is internalised into macrophages together with other membrane components, such as the integrin CD11b/CD18 (CR3), its receptor in these immune cells, and GM1. The goal of this study was to determine whether ACT uptake is restricted to receptor-bearing macrophages or on the contrary may also take place into cells devoid of receptor and gain more insights on the signalling involved. Here, we show that ACT is rapidly eliminated from the cell membrane of either CR3-positive as negative cells, though through different entry routes, which depends in part, on the target cell physiology and characteristics. ACT-induced Ca2+ influx and activation of non-receptor Tyr kinases into the target cell appear to be common master denominators in the different endocytic strategies activated by this toxin. Very importantly, we show that, upon incubation with ACT, target cells are capable of repairing the cell membrane, which suggests the mounting of an anti-toxin cell repair-response, very likely involving the toxin elimination from the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.

Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.