945 resultados para build green
Resumo:
We are pleased to present these selected papers from the proceedings of the 3rd Crime, Justice and Social Democracy International Conference, held in July 2015 in Brisbane, Australia. Over 350 delegates attended the conference from 19 countries. The papers collected here reflect the diversity of topics and themes that were explored over three days. The Crime, Justice and Social Democracy International Conference aims to strengthen the intellectual and policy debates concerning links between justice, social democracy, and the reduction of harm and crime, through building more just and inclusive societies and proposing innovative justice responses. In 2015, attendees discussed these issues as they related to ideas of green criminology; indigenous justice; gender, sex and justice; punishment and society; and the emerging notion of ‘Southern criminology’. The need to build global connections to address these challenges is more evident than ever and the conference and these proceedings reflect a growing attention to interdisciplinary, novel, and interconnected responses to contemporary global challenges. Authors in these conference proceedings engaged with issues of online fraud, queer criminology and law, Indigenous incarceration, youth justice, incarceration in Brazil, and policing in Victoria, Australia, among others. The topics explored speak to the themes of the conference and demonstrate the range of challenges facing researchers of crime, harm, social democracy and social justice and the spaces of possibility that such research opens. Our thanks to the conference convenor, Dr Kelly Richards, for organising such a successful conference, and to all those presenters who subsequently submitted such excellent papers for review here. We would also particularly like to thank Jess Rodgers for their tireless editorial assistance, as well as the panel of international scholars who participated in the review process, often within tight timelines.
Resumo:
This thesis examines green marketing and green consumption behaviours addressing limited understandings about how consumers interpret their green consumption behaviour in their everyday lives; what motivates people to purchase green products, and what barriers exist to this behaviour. Findings reveal that enhancing green consumption through green marketing depends on consumers' enthusiasm to engage in green practices and green behavioural influences. The research supports the need for qualitative research to provide rich insights into relationships between consumer behaviour, green marketing and green consumption and builds a stronger knowledge foundation by introducing social practice theory into the marketing discipline.
Resumo:
Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.
Resumo:
In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated in this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least square regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations.
Resumo:
Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150µm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.
Resumo:
Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150µm and >150µm, with most metals concentrated in the particle size fraction <150µm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150µm and >150µm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.
Resumo:
Impervious surfaces in an urban catchment are the primary stormwater pollutant contributing areas. Appropriate treatment of stormwater runoff from these impervious surfaces is essential to safeguard the urban water environment. While urban roads have received significant research attention in this regard, roofs have not been well investigated. Key pollutant processes such as build-up on roads and roofs can be different due to the different surface characteristics. This entails different treatment strategies being needed for road and roofs. The research study characterized roof pollutants build-up by differentiating with road surfaces. It was noted that pollutants are more highly concentrated on particles and particularly finer particles in the case of roof surfaces, compared to road surfaces. Additionally, pollutants built-up on roof surfaces tend to be relatively more variable from one day to another in terms of pollutant loads. These results highlight the significance of roofs as a stormwater pollutant source and the important need for a specific stormwater treatment strategy rather than the application of a combined approach for treating stormwater runoff from both, roads and roofs.
Resumo:
A large and growing body of literature has explored corporate environmental sustainability initiatives and their impacts locally, regionally and internationally. While the initiatives provide examples of environmental stewardship and cleaner production, a large proportion of the organisations considered in this literature have ‘sustainable practice’, ‘environmental stewardship’ or similar goals as add-ons to their core business strategy. Furthermore, there is limited evidence of organizations embracing and internalising sustainability principles throughout their activities, products or services. Many challenges and barriers impede outcomes as whole system design or holistic approach to address environmental issues, with some evidence to suggest that targeted initiatives could be useful in making progress. ‘Lean management’ and other lean thinking strategies are often put forward as part of such targeted approaches. Within this context, the authors have drawn on current literature to undertake a review of lean thinking practices and how these influence sustainable business practice, considering the balance of environmental and economic aspects of triple bottom line in sustainability. The review methodology comprised firstly identifying theoretical constructs to be studied, developing criteria for categorising the literature, evaluating the findings within each category and considering the implications of the findings for areas for future research. The evaluation revealed two main areas of consideration: - a) lean manufacturing tools and environmental performance, and; - b) integrated lean and green models and approaches. However the review highlighted the ad hoc use of lean thinking within corporate sustainability initiatives, and established a knowledge gap in the form of a system for being able to consider different categories of environmental impacts in different industries and choose best lean tools or models for a particular problem in a way to ensure holistic exploration. The findings included a specific typology of lean tools for different environmental impacts, drawing from multiple case studies. Within this research context, this paper presents the findings of the review; namely the emerging consensus on the relationships between lean thinking and sustainable business practice. The paper begins with an overview of the current literature regarding lean thinking and its documented role in sustainable business practice. The paper then includes an analysis of lean and green paradigms in different industries; and describes the typology of lean tools used to reduce specific environmental impacts and, integrated lean and green models and approaches. The paper intends to encourage industrial practitioners to consider the merits and potential risks with using specific lean tools to reduce context-specific environmental impacts. It also aims to highlight the potential for further investigation with regard to comparing different industries and conceptualising a generalizable system for ensuring lean thinking initiatives build towards sustainable business practice.
Resumo:
We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.
Resumo:
Metal nanoparticle photocatalysts have attracted recent interest due to their strong absorption of visible and ultraviolet light. The energy absorbed by the metal conduction electrons and the intense electric fields in close proximity, created by the localized surface plasmon resonance effect, makes the crucial contribution of activating the molecules on the metal nanoparticles which facilitates chemical transformation. There are now many examples of successful reactions catalyzed by supported nanoparticles of pure metals and of metal alloys driven by light at ambient or moderate temperatures. These examples demonstrate these materials are a novel group of efficient photocatalysts for converting solar energy to chemical energy and that the mechanisms are distinct from those of semiconductor photocatalysts. We present here an overview of recent research on direct photocatalysis of supported metal nanoparticles for organic synthesis under light irradiation and discuss the significant reaction mechanisms that occur through light irradiation.
Resumo:
'I build my dwelling' was an exhibition of works including ‘Muscle flex’, ‘Language is, Language is not’, ‘S.O.S’ and the ‘Studio Remix’, held at Metro Arts Galleries, Brisbane in 2012. This body of work pursues a feminist engagement with art history and philosophy, engaging with pictorial, literary and vernacular quotations in order to replay and reveal the complexities of gender politics, representation and language.
Resumo:
There has recently been a rapidly increasing interest in solar powered UAVs. With the emergence of high power density batteries, long range and low-power micro radio devices, airframes, and powerful micro-processors and motors, small/micro UAVs have become applicable in civilian applications such as remote sensing, mapping, traffic monitoring, search and rescue. The Green Falcon UAV is an innovative project from Queensland University of Technology and has been developed and tested during these past years. It comprises a wide range of subsystems to be analyses and studied such as Solar Panel Cells, Gas sensor, Aerodynamics of the wing and others. Previous test however, resulted in damage to the solar cells and some of the subsystems including motor and ESC. This report describes the repair and verification process followed to improve the efficiency of the Green Falcon UAV. The report shows some of the results obtained in previous static and flight tests as well as some of recommendations.
Resumo:
The blue emission of ethyl-hexyl substituted polyfluorene (PF2/6) films is accompanied by a low energy green emission peak around 500 nm in inert atmosphere. The intensity of this 500 nm peak is large in electroluminescence (EL) compared to photoluminescence (PL)measurements. Furthermore, the green emission intensity reduces dramatically in the presence of molecular oxygen. To understand this, we have modeled various nonradiative processes by time dependent quantum many body methods. These are (i) intersystem crossing to study conversion of excited singlets to triplets leading to a phosphorescence emission, (ii) electron-hole recombination (e-hR) process in the presence of a paramagnetic impurity to follow the yield of triplets in a polyene system doped with paramagnetic metal atom, and (iii) quenching of excited triplet states in the presence of oxygen molecules to understand the low intensity of EL emission in ambient atmosphere, when compared with that in nitrogen atmosphere. We have employed the Pariser-Parr-Pople Hamiltonian to model the molecules and have invoked electron-electron repulsions beyond zero differential approximation while treating interactions between the organic molecule and the rest of the system. Our time evolution methods show that there is a large cross section for triplet formation in the e-hR process in the presence of paramagnetic impurity with degenerate orbitals. The triplet yield through e-hR process far exceeds that in the intersystem crossing pathway, clearly pointing to the large intensity of the 500 nm peak in EL compared to PL measurements. We have also modeled the triplet quenching process by a paramagnetic oxygen molecule which shows a sizable quenching cross section especially for systems with large sizes. These studies show that the most probable origin of the experimentally observed low energy EL emission is the triplets.
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Isoquinoline was prepared through the Beckmann rearrangement of cinnamaldoxime over different H-zeolites, K-10 montmorillonite clay, amorphous SiO2–Al2O3 and γ-alumina under well-optimized conditions of temperature, weight hourly space velocity and catalyst loading. Cinnamaldoxime under ambient reaction conditions over the catalysts underwent migration of the anti-styryl moiety to electron deficient nitrogen (Beckmann rearrangement) followed by an intramolecular cyclization to yield isoquinoline. Cinnamo-nitrile (dehydration product) and cinnamaldehyde were formed as by-products. Isoquinoline formation was high on zeolite catalysts (ca. >86.5%) and mordenite (ca. 92.3%) was the most efficient in the series. Catalysts were susceptible for deactivation and the decrease in the percentage conversion of oxime with time is associated with a corresponding increase in the acid hydrolysis producing salicylaldehyde at later stages of the reaction. However, these catalysts retain activity considerably and can be recycled without loss of activity and change of product distribution.