855 resultados para biomarker discovery
Resumo:
Excessive alcohol consumption represents a major risk factor for morbidity and mortality. It is therefore indispensable to be able to detect at-risk drinking. Ethyl glucuronide (EtG) is a specific marker of alcohol consumption. The determination of ethyl glucuronide in urine or blood can be used to prove recent driving under the influence of alcohol, even if ethanol is no longer detectable. The commercialization of an EtG specific immunological assay now allows to obtain preliminary results rapidly and easily with satisfying sensitivity. Moreover, the detection of ethyl glucuronide in hair offers the opportunity to evaluate an alcohol consumption over a long period. The EtG concentration in hair is in correlation with the amount of ingested alcohol. Thus, the analysis of ethyl glucuronide can be used to monitor abstinence, to detect alcohol relapse and to identify at-risk drinkers. However, a cut off allowing to detect chronic alcohol abuser reliably still does not exist. Therefore, it is recommended to perform the analysis of ethyl glucuronide in complement to the existing blood markers. A study financed by the Swiss Foundation for Alcohol Research is actually conducted by the West Switzerland University Center of Legal Medicine in order to establish an objective cut-off.
Resumo:
Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated with temozolomide. Notably, elderly patients (>65-70 years) with glioblastoma whose tumours lack MGMT promoter methylation derive minimal benefit from such chemotherapy. Thus, MGMT promoter methylation status has become a frequently requested laboratory test in neuro-oncology. This Review presents current data on the prognostic and predictive relevance of MGMT testing, discusses clinical trials that have used MGMT status to select participants, evaluates known issues concerning the molecular testing procedure, and addresses the necessity for molecular-context-dependent interpretation of MGMT test results. Whether MGMT promoter methylation testing should be offered to all individuals with glioblastoma, or only to elderly patients and those in clinical trials, is also discussed. Justifications for withholding alkylating agent chemotherapy in patients with MGMT-unmethylated glioblastomas outside clinical trials, and the potential role for MGMT testing in other gliomas, are also discussed.
Resumo:
Rapid amplification of cDNA ends (RACE) is a widely used approach for transcript identification. Random clone selection from the RACE mixture, however, is an ineffective sampling strategy if the dynamic range of transcript abundances is large. To improve sampling efficiency of human transcripts, we hybridized the products of the RACE reaction onto tiling arrays and used the detected exons to delineate a series of reverse-transcriptase (RT)-PCRs, through which the original RACE transcript population was segregated into simpler transcript populations. We independently cloned the products and sequenced randomly selected clones. This approach, RACEarray, is superior to direct cloning and sequencing of RACE products because it specifically targets new transcripts and often results in overall normalization of transcript abundance. We show theoretically and experimentally that this strategy leads indeed to efficient sampling of new transcripts, and we investigated multiplexing the strategy by pooling RACE reactions from multiple interrogated loci before hybridization.
Resumo:
Bacterial bioreporters have substantial potential for contaminant assessment but their real world application is currently impaired by a lack of sensitivity. Here, we exploit the bioconcentration of chemicals in the urine of animals to facilitate pollutant detection. The shore crab Carcinus maenas was exposed to the organic contaminant 2-hydroxybiphenyl, and urine was screened using an Escherichia coli-based luciferase gene (luxAB) reporter assay specific to this compound. Bioassay measurements differentiated between the original contaminant and its metabolites, quantifying bioconcentration factors of up to one hundred-fold in crab urine. Our results reveal the substantial potential of using bacterial bioreporter assays in real-time monitoring of biological matricesto determine exposure histories, with wide ranging potential for the in situ measurement of xenobiotics in risk assessments and epidemiology.
Resumo:
L'introduction des technologies de séquençage de nouvelle génération est en vue de révolutionner la médecine moderne. L'impact de ces nouveaux outils a déjà contribué à la découverte de nouveaux gènes et de voies cellulaires impliqués dans la pathologie de maladies génétiques rares ou communes. En revanche, l'énorme quantité de données générées par ces systèmes ainsi que la complexité des analyses bioinformatiques nécessaires, engendre un goulet d'étranglement pour résoudre les cas les plus difficiles. L'objectif de cette thèse a été d'identifier les causes génétiques de deux maladies héréditaires utilisant ces nouvelles techniques de séquençage, couplées à des technologies d'enrichissement de gènes. Dans ce cadre, nous avons développé notre propre méthode de travail (pipeline) pour l'alignement des fragments de séquence (reads). Suite à l'identification de gènes, nous avons réalisé une analyse fonctionnelle pour élucider leur rôle dans la maladie. Dans un premier temps, nous avons étudié et identifié des mutations impliquées dans une forme récessive de la rétinite pigmentaire qui est à ce jour la dégénérescence rétinienne héréditaire la plus fréquente. En particulier, nous avons constaté que des mutations faux-sens dans le gène FAM161A étaient la cause de la rétinite pigmentaire préalablement associé avec le locus RP28. De plus, nous avons démontré que ce gène avait des fonctions au niveau du cil du photorécepteur, complétant le large spectre des cilliopathies rétiniennes héréditaires. Dans un second temps, nous avons exploré la possibilité qu'un syndrome, relativement fréquent en pédiatrie de fièvre récurrente, appelé PFAPA (acronyme de fièvre périodique avec adénite stomatite, pharyngite et cervical aphteuse) puisse avoir une origine génétique. L'étiologie de cette maladie n'étant pas claire, nous avons tenté d'identifier le spectre génétique de patients PFAPA. Comme nous n'avons pas pu mettre à jour un nouveau gène unique muté et responsable de la maladie chez tous les individus dépistés, il semblerait qu'un modèle génétique plus complexe suggérant l'implication de plusieurs gènes dans la pathologie ait été identifié chez les patients touchés. Ces gènes seraient notamment impliqués dans des processus liés à l'inflammation ce qui élargirait l'impact de ces études à d'autres maladies auto-inflammatoires.
Resumo:
Absorption, transport and storage of iron are tightly regulated, as expected for an element, which is both essential and potentially toxic. Iron deficiency is the leading cause of anaemia, and it also compromises immune function and cognitive development. Iron overload damages the liver and other organs in hereditary hemochromatosis, and in thalassaemia patients with both transfusion and non-transfusionrelated iron accumulation. Excess iron has harmful effects in chronic liver diseases caused by excessive alcohol, obesity or viruses. There is evidence for involvement of iron in neurodegenerative diseases and in Type 2 diabetes. Variation in transferrin saturation, a biomarker of iron status, has been associated with mortality in patients with diabetes and in the general population13. All these associations between iron and either clinical disease or pathological processes make it important to understand the causes of variation in iron status. Importantly, information on genetic causes of variation can be used in Mendelian randomization studies to test whether variation in iron status is a cause or consequence of disease. We have used biomarkers of iron status (serum iron, transferrin, transferrin saturation and ferritin), which are commonly used clinically and readily measurable in thousands of individuals, and carried out a meta-analysis of human genomewide association study (GWAS) data from 11 discovery and eight replication cohorts. Our aims were to identify additional loci affecting markers of iron status in the general population and to relate the significant loci to information on gene expression to identify relevant genes. We also made an initial assessment of whether any such loci affect iron status in HFE C282Y homozygotes, who are at genetic risk of HFE-related iron overload (hereditary hemochromatosis type 1, OMIM #235200)
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.
Resumo:
PURPOSE: Rechallenge with temozolomide (TMZ) at first progression of glioblastoma after temozolomide chemoradiotherapy (TMZ/RT→TMZ) has been studied in retrospective and single-arm prospective studies, applying temozolomide continuously or using 7/14 or 21/28 days schedules. The DIRECTOR trial sought to show superiority of the 7/14 regimen. EXPERIMENTAL DESIGN: Patients with glioblastoma at first progression after TMZ/RT→TMZ and at least two maintenance temozolomide cycles were randomized to Arm A [one week on (120 mg/m(2) per day)/one week off] or Arm B [3 weeks on (80 mg/m(2) per day)/one week off]. The primary endpoint was median time-to-treatment failure (TTF) defined as progression, premature temozolomide discontinuation for toxicity, or death from any cause. O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation was prospectively assessed by methylation-specific PCR. RESULTS: Because of withdrawal of support, the trial was prematurely closed to accrual after 105 patients. There was a similar outcome in both arms for median TTF [A: 1.8 months; 95% confidence intervals (CI), 1.8-3.2 vs. B: 2.0 months; 95% CI, 1.8-3.5] and overall survival [A: 9.8 months (95% CI, 6.7-13.0) vs. B: 10.6 months (95% CI, 8.1-11.6)]. Median TTF in patients with MGMT-methylated tumors was 3.2 months (95% CI, 1.8-7.4) versus 1.8 months (95% CI, 1.8-2) in MGMT-unmethylated glioblastoma. Progression-free survival rates at 6 months (PFS-6) were 39.7% with versus 6.9% without MGMT promoter methylation. CONCLUSIONS: Temozolomide rechallenge is a treatment option for MGMT promoter-methylated recurrent glioblastoma. Alternative strategies need to be considered for patients with progressive glioblastoma without MGMT promoter methylation.
Resumo:
Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.
Resumo:
OBJECTIVE: Blood-borne biomarkers reflecting atherosclerotic plaque burden have great potential to improve clinical management of atherosclerotic coronary artery disease and acute coronary syndrome (ACS). APPROACH AND RESULTS: Using data integration from gene expression profiling of coronary thrombi versus peripheral blood mononuclear cells and proteomic analysis of atherosclerotic plaque-derived secretomes versus healthy tissue secretomes, we identified fatty acid-binding protein 4 (FABP4) as a biomarker candidate for coronary artery disease. Its diagnostic and prognostic performance was validated in 3 different clinical settings: (1) in a cross-sectional cohort of patients with stable coronary artery disease, ACS, and healthy individuals (n=820), (2) in a nested case-control cohort of patients with ACS with 30-day follow-up (n=200), and (3) in a population-based nested case-control cohort of asymptomatic individuals with 5-year follow-up (n=414). Circulating FABP4 was marginally higher in patients with ST-segment-elevation myocardial infarction (24.9 ng/mL) compared with controls (23.4 ng/mL; P=0.01). However, elevated FABP4 was associated with adverse secondary cerebrovascular or cardiovascular events during 30-day follow-up after index ACS, independent of age, sex, renal function, and body mass index (odds ratio, 1.7; 95% confidence interval, 1.1-2.5; P=0.02). Circulating FABP4 predicted adverse events with similar prognostic performance as the GRACE in-hospital risk score or N-terminal pro-brain natriuretic peptide. Finally, no significant difference between baseline FABP4 was found in asymptomatic individuals with or without coronary events during 5-year follow-up. CONCLUSIONS: Circulating FABP4 may prove useful as a prognostic biomarker in risk stratification of patients with ACS.
Resumo:
Microquasars are stellar x-ray binaries that behave as a scaled down version of extragalactic quasars. The star LS 5039 is a new microquasar system with apparent persistent ejection of relativistic plasma at a 3 kiloparsec distance from the sun. It may also be associated with a gamma-ray source discovered by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON-Gamma Ray Observatory satellite. Before the discovery of LS 5039, merely a handful of microquasars had been identified in the Galaxy, and none of them was detected in high-energy gamma-rays.
Resumo:
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies.