775 resultados para biaxial flexural strength


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composites of high-density biopolyethylene (HDBPE) obtained from ethylene derived from sugarcane ethanol and curaua fibers were formed by first mixing in an internal mixer followed by thermopressing. Additionally, hydroxyl-terminated polybutadiene (LHPB), which is usually used as an impact modifier, was mainly used in this study as a compatibilizer agent. The fibers, HDBPE and LHPB were also compounded using an inter-meshing twin-screw extruder and, subsequently, injection molded. The presence of the curaua fibers enhanced some of the properties of the HDBPE, such as its flexural strength and storage modulus. SEM images showed that the addition of LHPB improved the adhesion of the fiber/matrix at the interface, which increased the impact strength of the composite. The higher shear experienced during processing probably led to a more homogeneous distribution of fibers, making the composite that was prepared through extruder/injection molding more resistant to impact than the composite processed by the internal mixer/thermopressing. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main reasons for the attention focused on ceramics as possible structural materials are their wear resistance and the ability to operate with limited oxidation and ablation at temperatures above 2000°C. Hence, this work is devoted to the study of two classes of materials which can satisfy these requirements: silicon carbide -based ceramics (SiC) for wear applications and borides and carbides of transition metals for ultra-high temperatures applications (UHTCs). SiC-based materials: Silicon carbide is a hard ceramic, which finds applications in many industrial sectors, from heat production, to automotive engineering and metals processing. In view of new fields of uses, SiC-based ceramics were produced with addition of 10-30 vol% of MoSi2, in order to obtain electro conductive ceramics. MoSi2, indeed, is an intermetallic compound which possesses high temperature oxidation resistance, high electrical conductivity (21·10-6 Ω·cm), relatively low density (6.31 g/cm3), high melting point (2030°C) and high stiffness (440 GPa). The SiC-based ceramics were hot pressed at 1900°C with addition of Al2O3-Y2O3 or Y2O3-AlN as sintering additives. The microstructure of the composites and of the reference materials, SiC and MoSi2, were studied by means of conventional analytical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (SEM-EDS). The composites showed a homogeneous microstructure, with good dispersion of the secondary phases and low residual porosity. The following thermo-mechanical properties of the SiC-based materials were measured: Vickers hardness (HV), Young’s modulus (E), fracture toughness (KIc) and room to high temperature flexural strength (σ). The mechanical properties of the composites were compared to those of two monolithic SiC and MoSi2 materials and resulted in a higher stiffness, fracture toughness and slightly higher flexural resistance. Tribological tests were also performed in two configurations disco-on-pin and slideron cylinder, aiming at studying the wear behaviour of SiC-MoSi2 composites with Al2O3 as counterfacing materials. The tests pointed out that the addition of MoSi2 was detrimental owing to a lower hardness in comparison with the pure SiC matrix. On the contrary, electrical measurements revealed that the addition of 30 vol% of MoSi2, rendered the composite electroconductive, lowering the electrical resistance of three orders of magnitude. Ultra High Temperature Ceramics: Carbides, borides and nitrides of transition metals (Ti, Zr, Hf, Ta, Nb, Mo) possess very high melting points and interesting engineering properties, such as high hardness (20-25 GPa), high stiffness (400-500 GPa), flexural strengths which remain unaltered from room temperature to 1500°C and excellent corrosion resistance in aggressive environment. All these properties place the UHTCs as potential candidates for the development of manoeuvrable hypersonic flight vehicles with sharp leading edges. To this scope Zr- and Hf- carbide and boride materials were produced with addition of 5-20 vol% of MoSi2. This secondary phase enabled the achievement of full dense composites at temperature lower than 2000°C and without the application of pressure. Besides the conventional microstructure analyses XRD and SEM-EDS, transmission electron microscopy (TEM) was employed to explore the microstructure on a small length scale to disclose the effective densification mechanisms. A thorough literature analysis revealed that neither detailed TEM work nor reports on densification mechanisms are available for this class of materials, which however are essential to optimize the sintering aids utilized and the processing parameters applied. Microstructural analyses, along with thermodynamics and crystallographic considerations, led to disclose of the effective role of MoSi2 during sintering of Zrand Hf- carbides and borides. Among the investigated mechanical properties (HV, E, KIc, σ from room temperature to 1500°C), the high temperature flexural strength was improved due to the protective and sealing effect of a silica-based glassy phase, especially for the borides. Nanoindentation tests were also performed on HfC-MoSi2 composites in order to extract hardness and elastic modulus of the single phases. Finally, arc jet tests on HfC- and HfB2-based composites confirmed the excellent oxidation behaviour of these materials under temperature exceeding 2000°C; no cracking or spallation occurred and the modified layer was only 80-90 μm thick.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first part of this three-part review on the relevance of laboratory testing of composites and adhesives deals with approval requirements for composite materials. We compare the in vivo and in vitro literature data and discuss the relevance of in vitro analyses. The standardized ISO protocols are presented, with a focus on the evaluation of physical parameters. These tests all have a standardized protocol that describes the entire test set-up. The tests analyse flexural strength, depth of cure, susceptibility to ambient light, color stability, water sorption and solubility, and radiopacity. Some tests have a clinical correlation. A high flexural strength, for instance, decreases the risk of fractures of the marginal ridge in posterior restorations and incisal edge build-ups of restored anterior teeth. Other tests do not have a clinical correlation or the threshold values are too low, which results in an approval of materials that show inferior clinical properties (e.g., radiopacity). It is advantageous to know the test set-ups and the ideal threshold values to correctly interpret the material data. Overall, however, laboratory assessment alone cannot ensure the clinical success of a product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High flexural strength and stiffness can be achieved by forming a thin panel into a wave shape perpendicular to the bending direction. The use of corrugated shapes to gain flexural strength and stiffness is common in metal and reinforced plastic products. However, there is no commercial production of corrugated wood composite panels. This research focuses on the application of corrugated shapes to wood strand composite panels. Beam theory, classical plate theory and finite element models were used to analyze the bending behavior of corrugated panels. The most promising shallow corrugated panel configuration was identified based on structural performance and compatibility with construction practices. The corrugation profile selected has a wavelength equal to 8”, a channel depth equal to ¾”, a sidewall angle equal to 45 degrees and a panel thickness equal to 3/8”. 16”x16” panels were produced using random mats and 3-layer aligned mats with surface flakes parallel to the channels. Strong axis and weak axis bending tests were conducted. The test results indicate that flake orientation has little effect on the strong axis bending stiffness. The 3/8” thick random mat corrugated panels exhibit bending stiffness (400,000 lbs-in2/ft) and bending strength (3,000 in-lbs/ft) higher than 23/32” or 3/4” thick APA Rated Sturd-I-Floor with a 24” o.c. span rating. Shear and bearing test results show that the corrugated panel can withstand more than 50 psf of uniform load at 48” joist spacings. Molding trials on 16”x16” panels provided data for full size panel production. Full size 4’x8’ shallow corrugated panels were produced with only minor changes to the current oriented strandboard manufacturing process. Panel testing was done to simulate floor loading during construction, without a top underlayment layer, and during occupancy, with an underlayment over the panel to form a composite deck. Flexural tests were performed in single-span and two-span bending with line loads applied at mid-span. The average strong axis bending stiffness and bending strength of the full size corrugated panels (without the underlayment) were over 400,000 lbs-in2/ft and 3,000 in-lbs/ft, respectively. The composite deck system, which consisted of an OSB sheathing (15/32” thick) nailed-glued (using 3d ringshank nails and AFG-01 subfloor adhesive) to the corrugated subfloor achieved about 60% of the full composite stiffness resulting in about 3 times the bending stiffness of the corrugated subfloor (1,250,000 lbs-in2/ft). Based on the LRFD design criteria, the corrugated composite floor system can carry 40 psf of unfactored uniform loads, limited by the L/480 deflection limit state, at 48” joist spacings. Four 10-ft long composite T-beam specimens were built and tested for the composite action and the load sharing between a 24” wide corrugated deck system and the supporting I-joist. The average bending stiffness of the composite T-beam was 1.6 times higher than the bending stiffness of the I-joist. A 8-ft x 12-ft mock up floor was built to evaluate construction procedures. The assembly of the composite floor system is relatively simple. The corrugated composite floor system might be able to offset the cheaper labor costs of the single-layer Sturd-IFloor through the material savings. However, no conclusive result can be drawn, in terms of the construction costs, at this point without an in depth cost analysis of the two systems. The shallow corrugated composite floor system might be a potential alternative to the Sturd-I-Floor in the near future because of the excellent flexural stiffness provided.