975 resultados para attaching and effacing Escherichia coli
Resumo:
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste trabalho foi verificar a possibilidade de transferência de resistência aos antimicrobianos entre bactérias normais da microbiota de frangos e Salmonella Enteritidis. Utilizamos amostras de Lactobacillus spp. (L. spp.), Salmonella Enteritidis (SE) e Escherichia coli (E. coli) previamente isolados de frangos, selecionados após prova de sensibilidade antimicrobiana in vitro conforme metodologia padrão (Comitê Nacional para Padrões Clínicos de Laboratório). Utilizamos aqueles com resistência e sensibilidade aos antimicrobianos indutores, chamados de bactérias doadoras e receptoras, respectivamente. Os antimicrobianos indutores foram utilizados para estimular a transferência de resistência aos antimicrobianos entre as bactérias. A possibilidade de transferência foi verificada da E. coli resistente para a SE e L. spp. Também foi verificada a transferência de uma amostra de L. spp resistente aos antimicrobianos indutores para a SE. Só foi possível verificar a transferência da resistência aos antimicrobianos indutores quando a bactéria doadora foi a E. coli e a bactéria receptora foi a SE. No presente estudo concluímos que a transferência de resistência aos antimicrobianos entre bactérias é possível, mas nem todas as bactérias participam desse evento, não transmitindo e nem adquirindo esta resistência.
Resumo:
The aim of this study was to compare the prevalence of virulence genes in 158 Escherichia coli strains isolated from 51 clinical cases of UTIs, 52 of pyometra and from 55 fecal samples from healthy dogs by PCR. papC was found in 12 (23.5%) strains isolated from UTIs, 19 (36.5%) from pyometra and 10 (18.2%) from feces. papGII was observed in 3 (5.8%) strains from pyometra, and papGIII in 10 (19.6%) from UTIs, 15 (28.8%) from pyometra and 9 (16.4%) from feces. sfaS was detected in 22 (43.1%) strains from UTIs, 24 (46.1%) from pyometra and 19 (34.5%) from feces. hlyA was observed in 17 (33.3%) strains from UTIs, 18 (34.6%) from pyometra and 7 (12.7%) from feces, while cnf-1 was detected in 11 (21.6%) from UTIs, 21 (40.4%) from pyometra and 9 (16.4%) from feces. iucD was observed in 12 (23.5%) strains from UTIs, 9 (17.3%) from pyometra and 1 (1.8%) from feces. usp was found 17 (33.3%) isolates from UTIs and 36 (69.9%) from pyometra. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Relata-se, pela primeira vez no Brasil, a ocorrência de mastite gangrenosa caprina atípica causada pela co-infecção por Staphylococcus aureus, Clostridium perfringens e Escherichia coli em uma cabra da raça Boer, na segunda semana de lactação. Descrevem-se os achados clínicos, os procedimentos de diagnóstico microbiológico e a conduta terapêutica.
Resumo:
Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a one-year prospective study carried out to define the role of rotavirus and Escherichia coli in local childhood diarrhea, we determined the prevalence of both agents in 54 diarrheic children attending a health center in Botucatu. Diarrheogenic E. coli (DEC) strains were characterized by O:H serotyping, a search for virulence genetic markers, and assays of adherence to HEp-2 cells. Except for enteroaggregative E. coli (EAEC), no other DEC category was detected in the children's stools. Both EAEC and rotavirus were isolated from 22 of the 54 (41.0%) diarrheic children as single agents or in combination with other enteropathogens. However, when considering the presence of a single agent, EAEC was dominant and isolated from 20.4% of the patients, whereas rotavirus was detected in 14.8%. These results indicate that rotavirus and EAEC play a significant role as agents of childhood diarrhea in the local population.
Resumo:
Hydrolysis of phospholipids by Group II phospholipase A(2) enzymes involves a nucleophilic attack on the sn-2 ester bond by the His48 residue and stabilization of the reaction intermediate by a Ca2+ ion cofactor bound to the Asp49 residue in the protein active site region, Bothropstoxin-I (BthTX-I) is a PLA, variant present in the venom of the snake Bothrops jararacussu which shows a Asp49 to Lys substitution and which lacks hydrolytic activity yet damages artificial membranes by a noncatalytic Ca2+-independent mechanism. In order to better characterize this unusual mechanism of membrane damage, we have established an expression system for BthTX-I in Escherichia coli. The DNA-coding sequence for BthTX-I was subcloned into the vector pET11-d, and the BthTX-I was expressed as inclusion bodies in E, coli BL21(DE3). The native BthTX-I contains seven disulfide bonds, and a straightforward protocol has been developed to refold the recombinant protein at high protein concentration in the presence of surfactants using a size-exclusion chromatography matrix. After refolding, recovery yields of 2.5% (corresponding to 4-5 mg of refolded recombinant BthTX-I per liter of bacterial culture) were routinely obtained. After refolding, identical fluorescent and circular dichroism spectra were obtained for the recombinant BthTX-I compared to those of the native protein. Furthermore, the native and refolded recombinant protein demonstrated identical membrane-damaging properties as evaluated by measuring the release of an entrapped fluorescent marker from liposomes, (C) 2001 Academic Press.