286 resultados para arcs
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.
Resumo:
New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacifc, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafoor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacifc Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower epsilon-Ne(T) for a given epsilon-Sr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Delta 7/4 Pb (5.3-9.3) and Delta 8/4 Pb (46.3-68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type ("normal") mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Ne(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacifc region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.
Resumo:
During Leg 134, the influence of ridge collision and subduction on the structural evolution of island arcs was investigated by drilling at a series of sites in the collision zone between the d'Entrecasteaux Zone (DEZ) and the central New Hebrides Island Arc. The DEZ is an arcuate Eocene-Oligocene submarine volcanic chain that extends from the northern New Caledonia Ridge to the New Hebrides Trench. High magnetic susceptibilities and intensities of magnetic remanence were measured in volcanic silts, sands, siltstones, and sandstones from collision zone sites. This chapter presents the preliminary results of studies of magnetic mineralogy, magnetic properties, and magnetic fabric of sediments and rocks from Sites 827 through 830 in the collision zone. The dominant carrier of remanence in the highly magnetic sediments and sedimentary rocks in the DEZ is low-titanium titanomagnetite of variable particle size. Changes in rock magnetic properties reflect variations in the abundance and size of titanomagnetite particles, which result from differences in volcanogenic contribution and the presence or absence of graded beds. Although the anisotropy of magnetic susceptibility results are difficult to interpret in terms of regional stresses because the cores were azimuthally unoriented, the shapes of the susceptibility ellipsoids provide information about deformation style. The magnetic fabric of most samples is oblate, dominated by foliation, as is the structural fabric. The variability of degree of anisotropy (P) and a factor that measures the shape of the ellipsoid (q) reflect the patchy nature of deformation, at a micrometer scale, that is elucidated by scanning electron microscope analysis. The nature of this patchiness implies that deformation in the shear zones is accomplished primarily by motion along bedding planes, whereas the material within the beds themselves remains relatively undeformed.
Resumo:
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69-84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (~70% crystallization) of the parental melt (~46.4 wt % SiO2, ~2.5 wt % H2O, ~0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of deltaFMQ = 0.9-1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx : (Crt-Mt) ~ 13 : 54 : 24 : 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (~45 wt % SiO2) picrobasalt (~14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ~8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20-30°C lower than the solidus temperature of 'dry' peridotite (1230-1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760-810°C and pressures of ~3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100-125 km beneath Kamchatka was estimated at 4°C/km.
Resumo:
"Dans les 1re et 2e parties, sont décrits les ponts qui ont--ou qui avaient--des voûtes de 40m et plus de portée."--t. I, p. [iii]
Resumo:
Mode of access: Internet.
Resumo:
XVIII. Astronomical observations for latitude made during the period 1885 to 1895 and deduced values of the deflections of the plumb-line. Prepared under the directions of...S.G. Burrard. 1906.--XIX. Levelling of precision in India (1858-190) by S.G. Burrard..1910.--XIXA. Descriptions and heights of bench-marks on southern lines of levelling. Prepared under the directions of S.G. Burrard. 1910.--XIXB. Descriptions and heights of bench-marks on the northern lines of levelling. Prepared under the directions of S.G. Burrard. 1910.
Resumo:
Colophon: A Paris, chez P. G. Simon ...
Resumo:
t. 1. Saint-André-des-Arcs. Saint Benoît.--t. 2. Bernardins. Charonne.--t. 3. Chartreux. Saint-Étienne-du-Mont.--t. 4. Saint-Eustache. Sainte-Geneviève-la-Petite / revu et mis au point par Max Prinet.--t. 5. fasc. 1. Saint-Germain l'Auxerrois / publié par André Lesort et Hélène Verlet.--t. 5. fasc. 2. Saint-Germain des Prés. Incurables, nos 2244-2591 / publié par Hélène Verlet.--t. 6. Les Saints-Innocents, nos 2592 à 3119 / publié par Hélène Verlet -- t. 8. Saint-Landry- La Merci, no.3638 à 3956 -- t. 9. Saint Merry-Saint Nicolas du Louvre, nos.3957-4447 t. 10. Les épitaphes de la cathédrale Notre-Dame de Paris -- t. 11. Noviciat des Jésuites--Saint-Sauveur, nos 4850-5344 / Helene Verlet -- t. 12. Saint-Sepulcre-Saint-Yves, no. 5345-5915
Resumo:
Este estudo avaliou as alterações produzidas nos arcos dentais superiores de pacientes submetidos à Expansão Rápida da Maxila Assistida Cirurgicamente (ERMAC). A amostra utilizada foi composta de 50 modelos de gesso superiores de 18 pacientes, sendo seis do sexo masculino e 12 do sexo feminino, com média de idade de 23,3 anos. Para cada paciente foram preparados três modelos de gesso obtidos em diferentes fases: Inicial, antes do procedimento operatório (T1); três meses pós-expansão (travamento do expansor) e momento da remoção do aparelho expansor tipo Hyrax e colocação da placa removível de acrílico para contenção (T2); seis meses pós-expansão e momento de remoção da placa de acrílico (T3). O dispositivo expansor utilizado foi o disjuntor tipo Hyrax. O procedimento cirúrgico adotado foi a osteotomia lateral da maxila sem o envolvimento da lâmina pterigóide, osteotomia da espinha nasal à linha média dental (incisivos centrais superiores), separação da sutura palatina mediana por meio de cinzel e separação do septo nasal. O início da ativação ocorreu no terceiro dia pós-operatório, sendo ¼ de volta pela manhã e ¼ à noite, sendo que as ativações seguiram critérios clínicos para o controle da expansão. As medidas foram realizadas por meio da máquina de medição tridimensional (SAC), baseando-se nas alterações nos três planos (vertical, sagital e transversal) que ocorreram nos modelos de gesso. Concluiu-se que: 1. Houve um aumento estatisticamente significante nas distâncias transversais em todos os grupos de dentes (de incisivos centrais até segundos molares) de T1 para T2, demonstrando a efetividade do tratamento. De T2 para T3 não houve diferença estatisticamente significante para nenhuma variável, indicando, assim, estabilidade após seis meses do término da ERMAC; 2. Houve um aumento estatisticamente significante nas inclinações dos primeiros e segundos molares dos lados direito e esquerdo e dos segundos pré-molares apenas do lado esquerdo, sugerindo um comportamento assimétrico dos dentes avaliados; 3. Houve um aumento na largura palatina nos intervalos analisados, com diferenças estatisticamente significantes entre T1 x T2 e T1 x T3; 4. Não foram observadas diferenças estatisticamente significantes na profundidade palatina nos intervalos analisados.(AU)
Resumo:
The accuracy of altimetrically derived oceanographic and geophysical information is limited by the precision of the radial component of the satellite ephemeris. A non-dynamic technique is proposed as a method of reducing the global radial orbit error of altimetric satellites. This involves the recovery of each coefficient of an analytically derived radial error correction through a refinement of crossover difference residuals. The crossover data is supplemented by absolute height measurements to permit the retrieval of otherwise unobservable geographically correlated and linearly combined parameters. The feasibility of the radial reduction procedure is established upon application to the three day repeat orbit of SEASAT. The concept of arc aggregates is devised as a means of extending the method to incorporate longer durations, such as the 35 day repeat period of ERS-1. A continuous orbit is effectively created by including the radial misclosure between consecutive long arcs as an infallible observation. The arc aggregate procedure is validated using a combination of three successive SEASAT ephemerides. A complete simulation of the 501 revolution per 35 day repeat orbit of ERS-1 is derived and the recovery of the global radial orbit error over the full repeat period is successfully accomplished. The radial reduction is dependent upon the geographical locations of the supplementary direct height data. Investigations into the respective influences of various sites proposed for the tracking of ERS-1 by ground-based transponders are carried out. The potential effectiveness on the radial orbital accuracy of locating future tracking sites in regions of high latitudinal magnitude is demonstrated.
Resumo:
The work described in this thesis concerns the application of radar altimetry, collected from the ERS-1 and TOPEX/POSEIDON missions, to precise satellite orbits computed at Aston University. The data is analysed in a long arc fashion to determine range biases, time tag biases, sea surface topographies and to assess the radial accuracy of the generated orbits through crossover analysis. A sea surface variability study is carried out for the North Sea using repeat altimeter profiles from ERS-1 and TOPEX/POSEIDON in order to verify two local U.K. models for ocean tide and storm surge effects. An on-side technique over the English Channel is performed to compute the ERS-1, TOPEX and POSEIDON altimeter range biases by using a combination of altimetry, precise orbits determined by short arc methods, tide gauge data, GPS measurements, geoid, ocean tide and storm surge models. The remaining part of the thesis presents some techniques for the short arc correction of long arc orbits. Validation of this model is achieved by way of comparison with actual SEASAT short arcs. Simulations are performed for the ERS-1 microwave tracking system, PRARE, using the range data to determine time dependent orbit corrections. Finally, a brief chapter is devoted to the recovery of errors in station coordinates by the use of multiple short arcs.
Resumo:
This thesis describes the geology, geochemistry and mineralogy of a Lower Proterozoic, metamorphosed volcanogenic Cu-Zn deposit, situated at the western end of the Flin Flon greenstone belt. Stratabound copper mineralisation occurs in silicified and chloritoid-bearing alteration assemblages within felsic tuffs and is mantled by thin (< 3m) high-grade sphalerite layers. Mineralisation is underlain by garnet-hornblende bearing Lower Iron Formation (LIF), and overlain by garnet-grunerite bearing Upper Iron Formation (UIF). Distinctive trace element trends, involving Ti and Zr, in mineralised and footwall felsic tuffs are interpreted to have formed by fractionation associated with a high-level magma chamber in a caldera-type environment. Discrimination diagrams for basaltic rocks are interpreted to indicate their formation in an environment similar to that of recent, primitive, tholeiitic island arcs. Microprobe studies of key mineral phases demonstrate large and small scale chemical variations in silicate phases related to primary lithological, rather than metamorphic, controls. LIF is characterised by alumino-ferro-tschermakite and relatively Mn-poor, Ca-rich garnets, whereas UIF contains manganoan grunerite and Mn-rich garnets. Metamorphic mineral reactions are considered and possible precursor assemblages identified for garnet-, and chloritoid-bearing rocks. Chloritoid-bearing rocks are interpreted as the metamorphosed equivalents of iron-rich feeder zones formed near the surface. The iron-formations are thought to represent iron-rich sediments formed on the sea floor formed from the venting of the ore fluids. Consideration of various mineral assemblages leads to an estimate for peak metamorphic conditions of 450-500oC and > 4Kb total pressure. Comparisons with other volcanogenic deposits indicate affinities with deposits of `Mattabi-type' from the Archean of Ontario. An extrapolation of the main conclusions of the thesis to adjacent areas points to the presence of a number of geologically similar localities with potential for mineralisation.