858 resultados para amine light stabilizer
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
Phlebotomine sand flies are often captured with human bait and/or light traps, either with or without an animal bait. More recently, synthetic attractants have been used as bait in traps to improve the capture of phlebotomine sand flies as well as other insects of medical and veterinary importance. The aim of the present study was to evaluate the effects of the kairomone 1-octen-3-ol (octenol) and the synthetic human odor BG-Mesh LureTM (BGML - lactic acid, caproic acid and ammonia) baited in modified CDC light traps on the capture of phlebotomine sand flies. The experiments followed the 5x5 Latin square design. Among the species caught, Lutzomyia intermedia apparently presented a dose-dependent response to octenol. The response obtained with the BGML, alone or in combination with octenol (5 mg/h), indicated some degree of attractiveness of these baits to different phlebotomine sand fly species. Octenol seems to be more attractive to L. intermedia than to Lutzomyia longipalpis, while the BGML presented a higher success in capturing L. longipalpis. When the components of the BGML were used separately, there was no increase in catching the female of L. intermedia. Apparently, there was no synergistic effect between the octenol and the BGML. In conclusion, the octenol and the BGML were demonstrated to be possible baits to attract some phlebotomine sand fly species.
Resumo:
The diagnosis of multiple myeloma is often suggested by disturbances found in routine laboratory tests such as sedimentation rate, electrophoresis of serum proteins and search for proteinuria. In light chain myeloma these tests are nonspecific and therefore misleading. We present 8 cases of light chain myeloma and discuss the diagnosis of multiple myeloma with its associated pitfalls.
Resumo:
Eggs and nymphs of Triatoma dimidiata were described using both light and scanning electron microscopy. The egg body and operculum have an exochorion formed by irregular juxtaposed polygonal cells; these cells are without sculpture and the majority of them are hexagonal in shape. The five instars of T. dimidiatacan be distinguished from each other by characteristics of the pre, meso and metanotum. The number of setiferous tubercles increases progressively among instars. The sulcus stridulatorium of 1st instar nymphs is amorphous, showing median parallel grooves; from the 2nd instar on the sulcus is, progressively, elongate, deep and posteriorly pointed with stretched parallel grooves. All instars have a trichobothrium on the apical 1/3 of segment II of the antenna. The opening of the Brindley's gland is on the mesopleura. Fifth instar nymphs have an apical ctenidium on the ventral surface of the fore tibia. Dorsal glabrous patches are found on the lateral 1/3 of abdomen. Bright oval patches are found on the ventral median line of the abdomen, from segment IV-VI; 1st instar nymphs lack these patches. Abdominal dorsal plates are present from the 1st-5th instars; the 1st instar also contains a rectangular plate in segment IX. From the 2nd instar on, variably-shaped plates are present on segments VII to IX. Morphometric data were also obtained and proved to be useful for distinguishing T. dimidiata instars.
Resumo:
A myxosporean parasite in the gill lamellae of the freshwater teleost fish, Sciades herzbergii (Ariidae) (Block, 1794), from the Poti River (Northeast of Brazil) was described by light and electron microscopy studies. Polysporic histozoic cyst-like plasmodia containing several life-cycle stages, including mature spores, were observed. The spores were pyriform and uninucleate, measuring 9.15 ± 0.39 μm (n = 50) long, 4.36 ± 0.23 μm (n = 25) wide and 2.61 ± 0.31 μm (n = 25) thick. Elongated pyriform polar capsules (PC) were of equal size (4.44 ± 0.41 μm long and 1.41 ± 0.42 μm in diameter) and each contained a polar filament with 9-10 coils obliquely arranged in relation to the axis of PC. The PC wall was composed of two layers of different electron densities. Histological analysis revealed the close contact of the cyst-like plasmodia with the basal portion of the epithelial gill layer, which exhibited some alterations in the capillary vessels. Based on the morphological and ultrastructural differences, the similarity of the spore features to those of the genus Myxobolus and the specificity of this host to previously described species, we describe a new species named Myxobolus sciades n. sp. in this study.
Resumo:
Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of non-textured objects or objects for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
This paper focuses on the problem of realizing a plane-to-plane virtual link between a camera attached to the end-effector of a robot and a planar object. In order to do the system independent to the object surface appearance, a structured light emitter is linked to the camera so that 4 laser pointers are projected onto the object. In a previous paper we showed that such a system has good performance and nice characteristics like partial decoupling near the desired state and robustness against misalignment of the emitter and the camera (J. Pages et al., 2004). However, no analytical results concerning the global asymptotic stability of the system were obtained due to the high complexity of the visual features utilized. In this work we present a better set of visual features which improves the properties of the features in (J. Pages et al., 2004) and for which it is possible to prove the global asymptotic stability
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
Coded structured light is an optical technique based on active stereovision that obtains the shape of objects. One shot techniques are based on projecting a unique light pattern with an LCD projector so that grabbing an image with a camera, a large number of correspondences can be obtained. Then, a 3D reconstruction of the illuminated object can be recovered by means of triangulation. The most used strategy to encode one-shot patterns is based on De Bruijn sequences. In This work a new way to design patterns using this type of sequences is presented. The new coding strategy minimises the number of required colours and maximises both the resolution and the accuracy
Resumo:
Obtaining automatic 3D profile of objects is one of the most important issues in computer vision. With this information, a large number of applications become feasible: from visual inspection of industrial parts to 3D reconstruction of the environment for mobile robots. In order to achieve 3D data, range finders can be used. Coded structured light approach is one of the most widely used techniques to retrieve 3D information of an unknown surface. An overview of the existing techniques as well as a new classification of patterns for structured light sensors is presented. This kind of systems belong to the group of active triangulation method, which are based on projecting a light pattern and imaging the illuminated scene from one or more points of view. Since the patterns are coded, correspondences between points of the image(s) and points of the projected pattern can be easily found. Once correspondences are found, a classical triangulation strategy between camera(s) and projector device leads to the reconstruction of the surface. Advantages and constraints of the different patterns are discussed
Resumo:
This paper presents the implementation details of a coded structured light system for rapid shape acquisition of unknown surfaces. Such techniques are based on the projection of patterns onto a measuring surface and grabbing images of every projection with a camera. Analyzing the pattern deformations that appear in the images, 3D information of the surface can be calculated. The implemented technique projects a unique pattern so that it can be used to measure moving surfaces. The structure of the pattern is a grid where the color of the slits are selected using a De Bruijn sequence. Moreover, since both axis of the pattern are coded, the cross points of the grid have two codewords (which permits to reconstruct them very precisely), while pixels belonging to horizontal and vertical slits have also a codeword. Different sets of colors are used for horizontal and vertical slits, so the resulting pattern is invariant to rotation. Therefore, the alignment constraint between camera and projector considered by a lot of authors is not necessary
Resumo:
In a search for new sensor systems and new methods for underwater vehicle positioning based on visual observation, this paper presents a computer vision system based on coded light projection. 3D information is taken from an underwater scene. This information is used to test obstacle avoidance behaviour. In addition, the main ideas for achieving stabilisation of the vehicle in front of an object are presented