933 resultados para Zinc oxide nanoparticles


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction. Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively. Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El SPION (Super Paramagnetic Iron Oxide Nanoparticles) ha estat estudiat com un nou adsorbent per eliminar l’arsènic d’aigües contaminades. Les condicions òptimes de treball es van assolir per un pH de 3,6 i per concentracions inferiors als 100ppm. No es van trobar interferències significatives produïdes pels cations Cu, Ni i Zn en l’adsorció de l’As, sent el fosfat l’anió que més interfereix. Una esponja de cel·lulosa s’ha utilitzat com a suport del SPION, per disminuir les agregacions de les nanopartícules en suspensió i per proporcionar una material adequat per l’adsorció en continu, experiment amb columnes. Així, es va obtenir un augment de la capacitat d’adsorció del SPION per l’As(V), mentre que per l’As(III) continua sent baixa, per tant s’augmenta la selectivitat per l’As(V). Les interferències aniòniques afecten d’igual manera a l’adsorció de l’As(III) i l’As(V) quan l’adsorció és en continu o en discontinu. Els cations metàl·lics no interfereixen en l’adsorció de l’arsènic, a excepció del coure que és adsorbit i porta a la disminució de l’adsorció d’arsènic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A deep understanding of the recombination dynamics of ZnO nanowires NWs is a natural step for a precise design of on-demand nanostructures based on this material system. In this work we investigate the influence of finite-size on the recombination dynamics of the neutral bound exciton around 3.365 eV for ZnO NWs with different diameters. We demonstrate that the lifetime of this excitonic transition decreases with increasing the surface-to-volume ratio due to a surface induced recombination process. Furthermore, we have observed two broad transitions around 3.341 and 3.314 eV, which were identified as surface states by studying the dependence of their life time and intensitiy with the NWs dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350Wwhereas the substrate temperature was kept at 160 °C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2×10 -3Vcm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to assess the response of apical and periapical tissues of dogs¿ teeth after root canal filling with different materials. Forty roots from dogs¿ premolars were prepared biomechanically and assigned to 4 groups filled with: Group I: commercial calcium hydroxide and polyethylene glycol-based paste (Calen®) thickened with zinc oxide; Group II: paste composed of iodoform, Rifocort® and camphorated amonochlorophenol; Group III: zinc oxide-eugenol cement; Group IV: sterile saline. After 30 days, the samples were subjected to histological processing. The histopathological findings revealed that in Groups I and IV the apical and periapical regions exhibited normal appearance, with large number of fibers and cells and no resorption of mineralized tissues. In Group II, mild inflammatory infiltrate and mild edema were observed, with discrete fibrogenesis and bone resorption. Group III showed altered periapical region and thickened periodontal ligament with presence of inflammatory cells and edema. It may be concluded that the Calen paste thickened with zinc oxide yielded the best tissue response, being the most indicated material for root canal filling of primary teeth with pulp vitality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visible up-conversion in ZnO:Er and ZnO:Er:Yb thin films deposited by RF magnetron sputtering under different O2-rich atmospheres has been studied. Conventional photoluminescence (325 nm laser source) and up-conversion (980 nm laser source) have been performed in the films before and after an annealing process at 800 °C. The resulting spectra demonstrate that the thermal treatment, either during or post-deposition, activates optically the Er3+ ions, being the latter process much more efficient. Moreover, the atmosphere during deposition was also found to be an important parameter, as the deposition under O2 flow increases the optical activity of Er+3 ions. In addition, the inclusion of Yb3+ ions into the films has shown an enhancement of the visible up-conversion emission at 660 nm by a factor of 4, which could be associated to either a better energy transfer from the 2F5/2 Yb level to the 4I11/2 Er one, or to the prevention of having Er2O3 clustering in the films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we investigate the influence of finite size on the recombinations dynamics of ZnO nanowires. We demonstrate that diameter as well as lenght of nanowires determine the lifetime of the neutral donor bound excitons. Our findings suggest that while the length is mainly responsible for different mode quality factors of the cavity-like nanowires, the diameter determines the influence of surface states as alternative recombinations channels for the optical modes trapped in the nanocavity. In addition, comparing nanowires grown using different catalyst we show that the surfaces states strongly depend on each precursor characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study of the interaction of small molecules with ZnO surfaces by means of theoretical methods. The AM1 semi-empirical method was used for optimizing the geometric parameters of adsorbed molecules. The optimized AM1 structures were used in the calculations of the ab initio RHF method with the 3-21G* basis set. The interaction of CO, CO2 and NH3 molecules were studied with (ZnO)22 and (ZnO)60 cluster models. We have analyzed the interaction energy, SCF orbital energies, Mulliken charges and the density of states (DOS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents zinc determination in certain medicines that contain zinc oxide and zinc undecylenate. The technique consists of a spectrophotometric micro-scale titration, where EDTA is used as titrant, and xylenol orange as an indicator, in a medium adjusted to pH = 6 with acetic acid and sodium acetate. After each added portion of EDTA, the absorbance value is measured at a selected wavelength, in order to detect the end-point of the spectrophotometric titration. The results already obtained are satisfactory and promote student's interest. An additional contribution intends to propose the use of micro-scale techniques.