365 resultados para Wingtip vortices


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In decaying two-dimensional Navier-Stokes turbulence, Batchelor's similarity hypothesis fails due to the existence of coherent vortices. However, it is shown that decaying two-dimensional turbulence governed by the Harney-Hasegawa-Mima (CHM) equation ∂/∂t (V^2 φ-λ^2 φ)+J(φ,∇^2 φ)=D where D is a damping, is described well by Batchelor's similarity hypothesis for wave numbers k ≪ λ (the so-called AM regime). It is argued that CHM turbulence in the AM regime is a more `ideal' form of two-dimensional turbulence than is Navier-Stokes turbulence itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present case studies of the optical and magnetic signatures of the characteristics of the first minute of substorm expansion phase onset observed in the ionosphere. We find that for two isolated substorms, the onset of magnetic pulsations in the 24–96 s period wavelet band are colocated in time and space with the formation and development of small-scale optical undulations along the most equatorward preexisting auroral arc prior to auroral breakup. These undulations undergo an inverse spatial cascade into vortices prior to the release of the westward traveling surge. We also present a case study of a multiple activation substorm, whereby discrete onsets of ULF wave power above a predetermined quiet time threshold are shown to be associated with specific optical intensifications and brightenings. Moreover, in the multiple activation substorm event, we show that neither the formation of the small-scale undulations nor the formation of similar structures along a north–south aligned arc is sufficient to produce auroral breakup associated with expansion phase onset. It is only ∼10 min after these two disparate activation regions initiate that auroral breakup and the subsequent formation of a westward traveling surge occur. We discuss the implications of these results in terms of the triggering mechanisms likely to be occurring during these specific events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative effects of uniform strain and background rotation on the stability of a strip of constant vorticity (a simple shear layer) are examined. The thickness of the strip decreases in time under the strain, so it is necessary to formulate the linear stability analysis for a time-dependent basic flow. The results show that even a strain rate γ (scaled with the vorticity of the strip) as small as 0.25 suppresses the conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave steepness cannot amplify by more than a certain factor, and must eventually decay. For γ < 0.25 the amplification factor increases as γ decreases; however, it is only 3 when γ e 0.065. Numerical simulations confirm the predictions of linear theory at small steepness and predict a threshold value necessary for the formation of coherent vortices. The results help to explain the impression from numerous simulations of two-dimensional turbulence reported in the literature that filaments of vorticity infrequently roll up into vortices. The stabilization effect may be expected to extend to two- and three-dimensional quasi-geostrophic flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Andrews (1984) has shown that any flow satisfying Arnol'd's (1965, 1966) sufficient conditions for stability must be zonally-symmetric if the boundary conditions on the flow are zonally-symmetric. This result appears to place very strong restrictions on the kinds of flows that can be proved to be stable by Arnol'd's theorems. In this paper, Andrews’ theorem is re-examined, paying special attention to the case of an unbounded domain. It is shown that, in that case, Andrews’ theorem generally fails to apply, and Arnol'd-stable flows do exist that are not zonally-symmetric. The example of a circular vortex with a monotonic vorticity profile is a case in point. A proof of the finite-amplitude version of the Rayleigh stability theorem for circular vortices is also established; despite its similarity to the Arnol'd theorems it seems not to have been put on record before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plankton ecology, it is a fundamental question as to how a large number of competing phytoplankton species coexist in marine ecosystems under a seemingly-limited variety of resources. This ever-green question was first proposed by Hutchinson [Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–145] as ‘the paradox of the plankton’. Starting from Hutchinson [Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–145], over more than four decades several investigators have put forward varieties of mechanisms for the extreme diversity of phytoplankton species. In this article, within the boundary of our knowledge, we review the literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamics under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton population that we have proposed recently. We find that, although the different mechanisms proposed so far is potentially applicable to specific ecosystems, a universally accepted theory for explaining plankton diversity in natural waters is still an unachieved goal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ di↵erent numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should—except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably di↵erent. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively di↵erent behavior—although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF ( ≈ 5 nT) these FTEs contribute about 30 kV to the mean total transpolar voltage (∼30%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the scaling properties and Kraichnan–Leith–Batchelor (KLB) theory of forced inverse cascades in generalized two-dimensional (2D) fluids (α-turbulence models) simulated at resolution 8192x8192. We consider α=1 (surface quasigeostrophic flow), α=2 (2D Euler flow) and α=3. The forcing scale is well resolved, a direct cascade is present and there is no large-scale dissipation. Coherent vortices spanning a range of sizes, most larger than the forcing scale, are present for both α=1 and α=2. The active scalar field for α=3 contains comparatively few and small vortices. The energy spectral slopes in the inverse cascade are steeper than the KLB prediction −(7−α)/3 in all three systems. Since we stop the simulations well before the cascades have reached the domain scale, vortex formation and spectral steepening are not due to condensation effects; nor are they caused by large-scale dissipation, which is absent. One- and two-point p.d.f.s, hyperflatness factors and structure functions indicate that the inverse cascades are intermittent and non-Gaussian over much of the inertial range for α=1 and α=2, while the α=3 inverse cascade is much closer to Gaussian and non-intermittent. For α=3 the steep spectrum is close to that associated with enstrophy equipartition. Continuous wavelet analysis shows approximate KLB scaling ℰ(k)∝k−2 (α=1) and ℰ(k)∝k−5/3 (α=2) in the interstitial regions between the coherent vortices. Our results demonstrate that coherent vortex formation (α=1 and α=2) and non-realizability (α=3) cause 2D inverse cascades to deviate from the KLB predictions, but that the flow between the vortices exhibits KLB scaling and non-intermittent statistics for α=1 and α=2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medicanes or “Mediterranean hurricanes” represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion–Genoa and South of Sicily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cloud streets are common feature in the Amazon Basin. They form from the combination of the vertical trade wind stress and moist convection. Here, satellite imagery, data collected during the COBRA-PARA (Caxiuan Observations in the Biosphere, River and Atmosphere of Para) field campaign, and high resolution modeling are used to understand the streets` formation and behavior. The observations show that the streets have an aspect ratio of about 3.5 and they reach their maximum activity around 15:00 UTC when the wind shear is weaker, and the convective boundary layer reaches its maximum height. The simulations reveal that the cloud streets onset is caused by the local circulations and convection produced at the interfaces between forest and rivers of the Amazon. The satellite data and modeling show that the large rivers anchor the cloud streets producing a quasi-stationary horizontal pattern. The streets are associated with horizontal roll vortices parallel to the mean flow that organizes the turbulence causing advection of latent heat flux towards the upward branches. The streets have multiple warm plumes that promote a connection between the rolls. These spatial patterns allow fundamental insights on the interpretation of the Amazon exchanges between surface and atmosphere with important consequences for the climate change understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel concept of quantum turbulence in finite size superfluids, such as trapped bosonic atoms, is discussed. We have used an atomic (87)Rb Bose-Einstein condensate (BEC) to study the emergence of this phenomenon. In our experiment, the transition to the quantum turbulent regime is characterized by a tangled vortex lines formation, controlled by the amplitude and time duration of the excitation produced by an external oscillating field. A simple model is suggested to account for the experimental observations. The transition from the non-turbulent to the turbulent regime is a rather gradual crossover. But it takes place in a sharp enough way, allowing for the definition of an effective critical line separating the regimes. Quantum turbulence emerging in a finite-size superfluid may be a new idea helpful for revealing important features associated to turbulence, a more general and broad phenomenon. [GRAPHICS] Amplitude versus elapsed time diagram of magnetically excited BEC superfluid, presenting the evolution from the non-turbulent regime, with well separated vortices, to the turbulent regimes, with tangled vortices (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA