890 resultados para Wave-motion, Theory of.
Resumo:
An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.
Resumo:
Current-potential characteristics are obtained numerically for a lone-adsorbate-mediated anodic charge transfer at the electrode-solution interface. An increase in the overpotential leads to the appearance of maxima in the anodic current-potential plots instead of the extended activationless region (i.e. a saturation current at large positive overpotentials) predicted by the direct heterogeneous outer-sphere anodic charge transfer process. A detailed analysis of the dependence of current-potential profiles and other kinetic parameters on various system parameters is also presented.
Resumo:
A primary flexure problem defined by Kirchhoff theory of plates in bending is considered. Significance of auxiliary function introduced earlier in the in-plane displacements in resolving Poisson-Kirchhoffs boundary conditions paradox is reexamined with reference to reported sixth order shear deformation theories, in particular, Reissner's theory and Hencky's theory. Sixth order modified Kirchhoff's theory is extended here to include shear deformations in the analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the propagation of a strong shock into an inhomogeneous medium using the new theory of shock dynamics. The equations are simple to solve and involve no trial-and-error method commonly used in this case. The results compare favourably with earlier results obtained in the case of self-similar flows, which arise as a special case of this theory.
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.
Resumo:
We discuss a recently formulated microscopic theory of the unusual coexistence of spin density waves (SDWs) and charge density waves (CDWs) that has been seen in recent experiments on (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4.
Resumo:
Recent experiments indicate that the spin-density waves (SDWs) in (TMTTF)(2)Br, (TMTSF)(2)PF6, and alpha-(BEDT-TTF)(2)MHg(SCN)(4) are highly unconventional and coexist with charge-density waves (CDWs). We present a microscopic theory of this unusual CDW-SDW coexistence. A complete understanding requires the explicit inclusion of strong Coulomb interactions, lattice discreteness, the anisotropic two-dimensional nature of the lattice, and the correct hand filling within the starting Hamiltonian. [S0031-9007(99)08498-7].
Resumo:
Closed form solutions for a simultaneously AM and high-harmonic FM mode locked laser system is presented. Analytical expressions for the pulsewidth and pulsewidth-bandwidth products are derived in terms of the system parameters. The analysis predicts production of 17 ps duration pulses in a Nd:YAG laser mode locked with AM and FM modulators driven at 80 MHz and 1.76 GHz for 1 W modulator input power. The predicted values of the pulsewidth-bandwidth product lie between the values corresponding to the pure AM and FM mode locking values.
Resumo:
An approach to the constraint counting theory of glasses is applied to many glass systems which include an oxide, chalcohalide, and chalcogenides. In this, shifting of the percolation threshold due to noncovalent bonding interactions in a basically covalent network and other recent extensions of the theory appear natural. This is particularly insightful and reveals that the chemical threshold signifies another structural transition along with the rigidity percolation threshold, thus unifying these two seemingly disparate toplogical concepts. [S0163-1829(99)11441-3].
Resumo:
One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed.
Resumo:
In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Shear deformation and higher order theories of plates in bending are (generally) based on plate element equilibrium equations derived either through variational principles or other methods. They involve coupling of flexure with torsion (torsion-type) problem and if applied vertical load is along one face of the plate, coupling even with extension problem. These coupled problems with reference to vertical deflection of plate in flexure result in artificial deflection due to torsion and increased deflection of faces of the plate due to extension. Coupling in the former case is eliminated earlier using an iterative method for analysis of thick plates in bending. The method is extended here for the analysis of associated stretching problem in flexure.