970 resultados para WATER NITROBENZENE INTERFACE
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
Resumo:
Current Brazilian law regarding water fluoridation classification is dichotomous with respect to the risks of and benefits for oral diseases, and fluoride (F) concentrations less than 0.6 or above 0.8 mg F/L are considered outside the normal limits. Thus, the law does not consider that both caries and fluorosis are dependent on the dosage and duration of fluoride exposure because they are both chronic diseases. Therefore, this study evaluated the quality of water fluoridation in Maringá, PR, Brazil, considering a new classification for the concentration of F in water the supply, based on the anticaries benefit and risk of fluorosis (CECOL/USP, 2011). Water samples (n = 325) were collected monthly over one year from 28 distribution water networks: 20 from treatment plants and 8 from artesian wells. F concentrations were determined using a specific ion electrode. The average F concentration was 0.77 mg F/L (ppm F), ranging from 0.44 to 1.22 mg F/L. Considering all of the water samples analyzed, 83.7% of them presented from 0.55 to 0.84 mg F/L, and according to the new classification used, they would provide maximum anticaries benefit with a low risk of fluorosis. This percentage was lower (75.4%) in the water samples supplied from artesian wells than from those distributed by the treatment plant (86%). In conclusion, based on the new classification of water F concentrations, the quality of water fluoridation in Maringá is adequate and is within the range of the best balance between risk and benefit.
Resumo:
Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding), low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.
Resumo:
Cutinases (EC 3.1.1.74) are also known as cutin hidrolases. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification and trans-esterification reactions. They are also active in different reaction media, allowing their applications in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles and polymer chemistry. The present review describes the characteristics, potential applications and new perspectives for these enzymes.
Resumo:
This work investigated the cytotoxic and genotoxic potential of water from the River Paraíba do Sul (Brazil) using Allium cepa roots. An anatomo-morphological parameter (root length), mitotic indices, and frequency of micronuclei were analysed. Eight bulbs were chosen at random for treatment for 24 to 120 hours with the River water collected in the years of 2005 and 2006 from sites in the cities of Tremembé and Aparecida (São Paulo state, Brazil). Daily measurements of the length of the roots grown from each bulb were carried out throughout the experiment. Mitotic index (MI) and frequency of micronuclei (MN) were determined for 2000 cells per root, using 3-5 root tips from other bulbs (7-10). Only in the roots treated with samples of the River water collected in 2005 in Tremembé city was there a decrease in the root length growth compared to the respective control. However, a reduction in MI values was verified for both sites analysed for that year. Considering the data involving root length growth and especially MI values, a cytotoxic potential is suggested for the water of the River Paraíba do Sul at Tremembé and Aparecida, in the year of 2005. On the other hand, since in this year the MN frequency was not affected with the river water treatments, genotoxicity is not assumed for the river water sampled at the aforementioned places.
Resumo:
Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers’ instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.
Resumo:
The aim of this in vitro study was to evaluate the tensile bond strength of a self-etching adhesive system to three different dentinal substrates. Primary molar teeth that had been recently exfoliated (RE), with unknown time of exfoliation (UT), and extracted due to prolonged retention (PR) were used for this investigation. Ten primary molar teeth of each group were cut in the middle following the mesio-distal direction, creating a total of twenty specimens per group. The specimens were included in acrylic resin and had a flat dentin surface exposed. The self-etching adhesive system was applied to this surface and a 3-millimeter high cone with diameter of 2 mm in the adhesion area was constructed using composite resin. The specimens were stored in distilled water at 37ºC for 24 hours. Fifteen specimens of each substrate were used for the tensile bond test (n = 15) and 5 had the interface analyzed by scanning electron microscopy (SEM). The data was examined by one-way ANOVA and presented no significant differences between groups (p = 0.5787). The mean values obtained for RE, UT and PR were 18.39 ± 9.70, 19.41 ± 7.80, and 23.30 ± 9.37 MPa, respectively. Any dentinal substrates of primary teeth studied are safe for tensile bond strength tests with adhesive systems.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
Few articles deal with lead and strontium isotopic analysis of water samples. The aim of this study was to define the chemical procedures for Pb and Sr isotopic analyses of groundwater samples from an urban sedimentary aquifer. Thirty lead and fourteen strontium isotopic analyses were performed to test different analytical procedures. Pb and Sr isotopic ratios as well as Sr concentration did not vary using different chemical procedures. However, the Pb concentrations were very dependent on the different procedures. Therefore, the choice of the best analytical procedure was based on the Pb results, which indicated a higher reproducibility from samples that had been filtered and acidified before the evaporation, had their residues totally dissolved, and were purified by ion chromatography using the Biorad® column. Our results showed no changes in Pb ratios with the storage time.
Resumo:
Glioxal pode ser obtido a partir de biomassa (como da oxidação de lipídeos) e não é tóxico ou volátil, tendo sido por isso utilizado no presente trabalho como substituto de formaldeído na preparação de resina fenólica do tipo novolaca, sendo usado como catalisador o ácido oxálico, que também pode ser obtido de fontes renováveis. A resina glioxal-fenol foi utilizada na preparação de compósitos reforçados com celulose microcristalina (CM, 30, 50 e 70% em massa), uma celulose com elevada área superficial. As imagens de microscopia eletrônica de varredura (MEV) das superfícies fraturadas demonstraram que os compósitos apresentaram boa interface reforço/matriz, consequência da elevada área superficial da CM e presença de grupos polares (hidroxilas) tanto na matriz como na celulose, o que permitiu a formação de ligações hidrogênio, favorecendo a compatibilidade entre ambas. A análise térmica dinâmico-mecânica (DMTA) demonstrou que todos os compósitos apresentaram elevado módulo de armazenamento à temperatura ambiente. Além disso, o compósito reforçado com 30% de CM apresentou baixa absorção de água, comparável à do termorrígido fenólico, que é utilizado em escala industrial. Os resultados demonstraram que compósitos com boas propriedades podem ser preparados usando elevada proporção de materiais obtidos de biomassa.
Resumo:
The absorption spectra of DPH at fixed concentration do not change with water content in organic solvents. It exhibits monomer bands, such as those obtained in ethanol. The absorption did not change for solutions up to 54 and 46% of water in ethanol and DMSO, respectively, for [DPH] = 5.0 × 10-6 mol L-1 at 30 °C. However, at the same experimental conditions, a gradual sharp decay of the DPH fluorescence is observed. It is proposed that water molecules below these water concentration limits act as quenchers of the excited states of DPH. Stern-Volmer quenching constants by intensities measurements are 7.4 × 10-2 (water/ethanol) and 2.6 × 10-2 L mol-1 (water/DMSO). DPH lifetime measurements in the absence and presence of water resulted in 7.1 × 10-2 L mol-1 in water/ethanol, which pointed out that the process is a dynamic quenching by water molecules. For experiments using DPH as probe, this process can affect data, leading to misunderstanding interpretation.
Resumo:
Solid-phase microextraction, using on-line bis(trimethylsilyl)trifluoroacetamide derivatisation, gas chromatography, and mass spectrometry, was evaluated in the quantification of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in water samples. Fibres encompassing a wide range of polarities were used with headspace and direct immersion sampling. For the immersion procedure, various parameters affecting MX extraction, including pH, salinity, temperature, and extraction time were evaluated. The optimised method (polyacrylate fibre; 20% Na2SO4; pH 2.0; 60 min; 20 °C) was applied for reservoir chlorinated water samples-either natural or spiked with MX (50 ng L-1 and 100 ng L-1). The recovery of MX ranged from 44 to 72%. Quantification of MX in water samples was done using external standard and the selected ion monitoring mode. Correlation coefficient (0.98%), relative standard deviation (5%), limit of detection (30 ng L-1) and limit of quantification (50 ng L-1) were obtained from calibration curve.
Resumo:
The objective of this paper was to assess bacteriological quality of drinking water in a peri-urban area located in the Metropolitan Region of São Paulo, Brazil. A total of 89 water samples were collected from community plastic tanks and 177 water samples from wells were collected bimonthly, from September 2007 to November 2008, for evaluating bacteriological parameters including: Escherichia coli, Enterococcus and heterotrophic plate count (HPC). Clostridium perfringens was investigated in a subsample (40 samples from community plastic tank and 40 from wells). E. coli was present in 5 (5.6%) samples from community plastic tanks (2.0 - 5.1x10(4) MPN/100mL) and in 70 (39.5%) well samples (2.0 - 8.6x10(4) MPN/100mL). Thus, these samples were not in accordance with the Brazilian Regulation. Enterococcus was detected in 20 (22.5%) samples of the community plastic tanks (1 to 79 NC/100mL) and in 142 (80.2%) well samples (1 to >200 NC/100mL). C. perfringens was detected in 5 (12.5%) community plastic tanks samples and in 35 (87.5%) wells samples (2.2 to >16 MPN/100mL). HPC were above 500 CFU/mL in 5 (5.6%) waters from community plastic tanks. In wells samples, the HPC ranged from <1 to 1.6x10(4) CFU/mL. The residual chlorine did not attend the standard established in the drinking water legislation (0.2 mg/L), except in 20 (22.5%) samples. These results confirm the vulnerability of the water supply systems in this peri-urban area what is clearly a public health concern.