997 resultados para Virtual Prototyping
Resumo:
An opportunistic relay selection scheme improving cooperative diversity is devised using the concept of a virtual SIMO-MISO antenna array. By incorporating multiple users as a virtual distributed antenna, not only helps combat fading but also provides significant advantage in terms of energy consumption. The proposed efficient multiple relay selection uses the concept of the distributed Alamouti scheme in a time varying environment to realize cooperative networking in wireless relay networks and provides the platform for outage, Diversiy-Multiplexing Tradeoff (DMT) and Bit-Error-Rate (BER) analysis to conclude that it is capable of achieving promising diversity gains by operating at much lower SNR when compared with conventional relay selection methods. It also has the added advantage of conserving energy for the relays that are reachable but not selected for the cooperative communication.
Resumo:
This paper outlines a review carried out at Queensland University of Technology (QUT) in 2013 to identify the extent to which the centrally supported virtual learning environment met current and future learning and teaching needs. A range of consultation and investigation activities occurred from May to November to encourage open stakeholder feedback as well as to allow for reflection on alternative digital technologies, systems and strategies. This resulted in the development of nine recommendations, which, following a planning phase, will commence being implemented from mid-2014.
Resumo:
Extending Lash and Urry's (1994) notion of new "imagined communities" through information and communication structures, I ask the question: Are emergent teachers happy when they interact in online learning environments? This question is timely in the context of the ubiquity of online media and its pervasiveness in teachers' everyday work and lives. The research is important nationally and internationally, because the current research is contradictory. On the one hand, feelings of isolation and frustration have been cited as common emotions experienced in many online environments (Su, Bonk, Magjuka, Liu, & Lee, 2005). Yet others report that online communities encourage a sense of belonging and support (Mills, 2011). Emotions are inherently social, are central to learning and online interaction (Shen, Wang, & Shen, 2009). The presentations reports the use of e-motion blogs to explore emotional states of emergent primary teachers in an online learning context as they transition into their first field experience in schools. The original research was conducted with a graduate class of 64 secondary science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 17-55 years. Online activities involved the participants watching a series of streamed live lectures within a course of 8 weeks duration, providing a varied set of learning experiences, such as viewing live teaching demonstrations. Each week, participants provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. The blogs answered the question: What emotions you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. The Language of Appraisal framework, following Martin and White (2005), was used to cluster the discrete emotions within six affect groups. The findings demonstrated that the pre-service teachers' emotional responses tended towards happiness and satisfaction within the typology of affect groups - un/happiness, in/security, and dis/satisfaction. Fewer participants reported that online learning mode triggered negative feelings of frustration, and when this occurred, it often pertained expectations of themselves in the forthcoming field experience in schools or as future teachers. The findings primarily contribute new understanding about emotional states in online communities, and recommendations are provided for supporting the happiness and satisfaction of emergent teachers as they interact in online communities. It demonstrates that online environments can play an important role in fulfilling teachers' need for social interaction and inclusion.
Resumo:
Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Metasonic GmbH has developed a process elicitation tool for their process suite. As part of a research engagement with Metasonic, staff from QUT, Australia have developed a 3D virtual world approach to the same problem, viz. eliciting process models from stakeholders in an intuitive manner. This book chapter tells the story of how QUT staff developed a 3D Virtual World tool for process elicitation, took the outcomes of their research project to Metasonic for evaluation, and finally, Metasonic’s response to the initial proof of concept.
Resumo:
We learn from the past that invasive species have caused tremendous damage to native species and serious disruption to agricultural industries. It is crucial for us to prevent this in the future. The first step of this process is to identify correctly an invasive species from native ones. Current identification methods, relying on mainly 2D images, can result in low accuracy and be time consuming. Such methods provide little help to a quarantine officer who has time constraints to response when on duty. To deal with this problem, we propose new solutions using 3D virtual models of insects. We explain how working with insects in the 3D domain can be much better than the 2D domain. We also describe how to create true-color 3D models of insects using an image-based 3D reconstruction method. This method is ideal for quarantine control and inspection tasks that involve the verification of a physical specimen against known invasive species. Finally we show that these insect models provide valuable material for other applications such as research, education, arts and entertainment. © 2013 IEEE.
Resumo:
Business process models have traditionally been an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach for process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions as they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. Empirical data obtained in this study suggests that this approach may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.
Resumo:
The aim of this project was to develop a general theory of stigmergy and a software design pattern to build collaborative websites. Stigmergy is a biological term used when describing some insect swarm-behaviour where 'food gathering' and 'nest building' activities demonstrate the emergence of self-organised societies achieved without an apparent management structure. The results of the project are an abstract model of stigmergy and a software design pattern for building Web 2.0 components exploiting this self-organizing phenomenon. A proof-of-concept implementation was also created demonstrating potential commercial viability for future website projects.
Resumo:
The importance of passenger experience in aviation has become well understood in the last several years. It is now generally accepted that the provision of good passenger experience is not an option, but a necessity, from an aviation profitability perspective. In this paper, we paint a picture of the future passenger experience by consolidating a number of industry and research perspectives. Using the future passenger experience as a starting point, we explore the components needed to enable this future vision. From this bottom-up approach, we identify the need to resolve data formatting and data ownership issues. The resolution of these data integration issues is necessary to enable the seamless future travel experience that is envisioned by the aviation industry. By looking at the passenger experience from this bottom-up, data centric perspective, we identify a potential shift in the way that future passenger terminals will be designed. Whereas currently the design of terminals is largely an architectural practice, in the near future, the design of the terminal building may become more of a virtual technology practice. This of course will pose a new set of challenges to designers of airport terminal environments.
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments
Resumo:
A prototype "messaging kettle" is described. The connected kettle aims to foster communication and engagement with an older friend or relative who lives remotely, during the routine of boiling the kettle. We describe preliminary encounters and findings from demonstrating a working prototype in morning tea gatherings of people in their 50s-late 70s and from introducing it into the homes of two people in their 80s who live on another continent. Key findings are that: The concept of keeping in touch around a "habituated object" such as a kettle was well received; Simple and varied interaction modalities that allow asymmetric forms of communication are needed; Designing for use across different time zones requires attention; And, that even when augmenting a habituated object, the process of introduction, appropriation and habituation still needs significant attention and investigation.
Resumo:
A curvilinear thin film model is used to simulate the motion of droplets on a virtual leaf surface, with a view to better understand the retention of agricultural sprays on plants. The governing model, adapted from Roy et al. (2002 J. Fluid Mech. 454, 235–261) with the addition of a disjoining pressure term, describes the gravity- and curvature driven flow of a small droplet on a complex substrate: a cotton leaf reconstructed from digitized scan data. Coalescence is the key mechanism behind spray coating of foliage, and our simulations demonstrate that various experimentally observed coalescence behaviours can be reproduced qualitatively. By varying the contact angle over the domain, we also demonstrate that the presence of a chemical defect can act as an obstacle to the droplet’s path, causing break-up. In simulations on the virtual leaf, it is found that the movement of a typical spray size droplet is driven almost exclusively by substrate curvature gradients. It is not until droplet mass is sufficiently increased via coalescence that gravity becomes the dominating force.