1000 resultados para Ultra-morphology
Resumo:
We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.
Resumo:
Iridium nanostructures with different morphologies are synthesized by a simple, environmentally friendly approach in aqueous media under mild conditions. The morphology dependent electrocatalytic activity of Ir nanochains and nanoparticles towards oxygen reduction reaction (ORR) has been demonstrated in both acidic and alkaline media. Comparative electrochemical studies reveal that nanochains exhibit significantly enhanced ORR activities in both acidic and alkaline media as compared with nanoparticles, as a result of the continuous structure of interconnected particles. The mechanism of oxygen reduction on Ir nanostructures predominantly follows a four-electron pathway in alkaline and acidic solutions. Excellent stability and good selectivity towards methanol tolerance are reported.
Resumo:
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.
Resumo:
Given the recent reports pertaining to novel optical properties of ultra-small quantum dots (QDs) (r <2 nm), this nanomaterial is of relevance to both technology and science. However it is well known that in these size regimes most chalocogenide QD dispersions are unstable. Since applications often require use of QD dispersions (e.g. for deployment on a substrate), stabilizing these ultra-small particles is of practical relevance. In this work we demonstrate a facile, green, solution approach for synthesis of stable, ultra-small ZnO QDs having radius less than 2 nm. The particle size is calculated using Brits' equation and confirmed by transmission electron micrographs. ZnO QDs reported remain stable for > 120 days in ethanol (at similar to 298-303 K). We report digestive ripening (DR) in TEA capped ZnO QDs; this occurs rapidly over a short duration of 5 min. To explain this observation we propose a suitable mechanism based on the Lee's theory, which correlates the tendency of DR with the observed zeta potentials of the dispersed medium. To the best of our knowledge this is the (i) first report on DR in oxide QDs, as well as the first direct experimental verification of Lee's theory, and (ii) most rapid DR reported so far. The facile nature of the method presented here makes ultra-small ZnO readily accessible for fundamental exploration and technologically relevant applications. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.
Resumo:
Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T-2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.
Resumo:
Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The taxonomy of the Hanuman langur (Semnopithecus spp.), a widely distributed Asian colobine monkey, has been in a flux for a long time due to much disagreement between various classification schemes. However, results from a recent field-based morphological study were consistent with Hill's (Ceylon J Sci 21:277-305, 1939) species level classification scheme. Here we tested the validity of S. hypoleucos and S. priam, the two South Indian species recognized by Hill. To this end, one mitochondrial and four nuclear markers were sequenced from over 72 non-invasive samples of Hanuman langurs and S. johnii collected from across India. The molecular data were subjected to various tree building methods. The nuclear data was also used in a Bayesian structure analysis and to determine the genealogical sorting index of each hypothesized species. Results from nuclear data suggest that the South Indian population of Hanuman langur consists of two units that correspond to the species recognized by Hill. However in the mitochondrial tree S. johnii and S. priam were polyphyletic probably due to retention of ancestral polymorphism and/or low levels of hybridization. Implications of these results on conservation of Hanuman langurs are also discussed.
Resumo:
We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.
Resumo:
This paper presents a low energy memory decoder architecture for ultra-low-voltage systems containing multiple voltage domains. Due to limitations in scalability of memory supply voltages, these systems typically contain a core operating at subthreshold voltages and memories operating at a higher voltage. This difference in voltage provides a timing slack on the memory path as the core supply is scaled. The paper analyzes the feasibility and trade-offs in utilizing this timing slack to operate a greater section of memory decoder circuitry at the lower supply. A 256x16-bit SRAM interface has been designed in UMC 65nm low-leakage process to evaluate the above technique with the core and memory operating at 280 mV and 500 mV respectively. The technique provides a reduction of up to 20% in energy/cycle of the row decoder without any penalty in area and system-delay.
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd(2)Sb(2) (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Gruneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of similar to 1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.
Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength
Resumo:
Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.