963 resultados para Traffic Flow Regimes
Resumo:
Se han desarrollado cuatro mejoras en los proyectos de simulación de flujo de tráfico en tiempo acelerado. Los proyectos [1] y [2] realizan una simulación de flujo de tráfico en un CAS, Maxima, y usan Java, para realizar la GUI. Ambos usan Jacomax para realizar la comunicación Java-Maxima. La primera ha sido implementar un algoritmo Dijkstra difuso en [2] que simule (de forma más real que el algoritmo Dijkstra), el camino que sigue un vehículo entre un origen y un destino, dentro de un mapa (un grafo) que representa una zona de Málaga. Además, se ha personalizado el grafo inicial asociando uno ponderado a cada vehículo, en el cual, las aristas (las calles) tienen un peso calculado con una uniforme o una normal. Para ganar en rendimiento en [1] y [2], se ha permitido al usuario decidir cada cuantos pasos en Maxima se comunica con Java, eliminando así muchas comunicaciones que resultaban lentas. Además, se ha creado un programa con Java, el cual crea un paquete Maxima con las funciones de distribución, densidad, masa, variables aleatorias, que el usuario desee, dando la posibilidad de elegir entre las más usuales ya implementadas. Este paquete puede ser cargado en [1] y [2] permitiendo al usuario elegir la función de distribución que más se asemeje al fenómeno que se desea simular. La última ha sido conseguir que funcionen los proyectos [1] y [2] en una máquina Mac.
Resumo:
Este artículo contiene el estudio inicial de un modelo de predicción de tráfico, que intenta mostrar cómo puede complementarse la toma de decisiones que afecten a la ciudad a través de una buena planificación vial. Esto permitirá dar alternativas posibles de solución mediante la predicción de flujos de tráfico y determinando las intersecciones de mayor influencia dentro de la red vial, lo que por consecuencia reduciría costes en tiempo, combustible, contaminación, etc., obteniendo así una herramienta de ayuda en la toma de decisiones respecto del tráfico. Específicamente, se utiliza modelos dinámicos lineales para predecir el tráfico en distintos puntos de una ciudad y, en consecuencia, pronosticar su eventual saturación. Se puede así predecir puntos de la ciudad en la que es necesario actuar para aliviar los problemas de tráfico antes de que éstos lleguen a manifestarse.
Resumo:
Part 21: Mobility and Logistics
Resumo:
The Noise Pollution causes degradation in the quality of the environment and presents itself as one of the most common environmental problems in the big cities. An Urban environment present scenario and their complex acoustic study need to consider the contribution of various noise sources. Accordingly to computational models through mapping and prediction of acoustic scene become important, because they enable the realization of calculations, analyzes and reports, allowing the interpretation of satisfactory results. The study neighborhood is the neighborhood of Lagoa Nova, a central area of the city of Natal, which will undergo major changes in urban space due to urban mobility projects planned for the area around the stadium and the consequent changes of urban form and traffic. Thus, this study aims to evaluate the noise impact caused by road and morphological changes around the stadium Arena das Dunas in the neighborhood of Lagoa Nova, through on-site measurements and mapping using the computational model SoundPLAN year 2012 and the scenario evolution acoustic for the year 2017. For this analysis was the construction of the first acoustic mapping based on current diagnostic acoustic neighborhood, physical mapping, classified vehicle count and measurement of sound pressure level, and to build the prediction of noise were observed for the area study the modifications provided for traffic, urban form and mobility work. In this study, it is concluded that the sound pressure levels of the year in 2012 and 2017 extrapolate current legislation. For the prediction of noise were numerous changes in the acoustic scene, in which the works of urban mobility provided will improve traffic flow, thus reduce the sound pressure level where interventions are expected
Resumo:
A partire dagli anni ’50 furono sviluppati numerosi modelli con l’intento di studiare i fenomeni connessi al traffico. Alcuni di essi riuscirono non solo a spiegare i fenomeni per i quali erano stati ideati ma misero in evidenza altre caratteristiche tipiche dei sistemi dinamici, come la presenza di cicli di isteresi e cambiamenti nella distribuzione dei tempi di percorrenza in situazioni di congestione. Questo lavoro si propone di verificare la validità di un modello semplificato ideato per mettere in luce i comportamenti tipici di un sistema di traffico, in particolare le congestioni che si vengono a creare sulla rete stradale. Tale modello è stato implementato per mezzo della libreria C++ Traffic Flow Dynamics Model, reperibile al link https://github.com/Grufoony/TrafficFlowDynamicsModel. Ai fini dello studio sono stati utilizzati i Diagrammi Fondamentali Macroscopici, particolari diagrammi che mettono in relazione gli osservabili principali di un network stradale quali velocità, densità e flusso. Variando il carico immesso nella rete stradale è stato possibile studiare il sistema in diversi regimi: carico costante, carico piccato e carico periodico. Mediante questi studi sono emerse diverse proprietà tipiche di ogni regime e, per alcuni di essi, è stata verificate e giustificate la presenza di uno o più cicli di isteresi. In ultimo è stata effettuata una breve analisi ad-hoc volta a evidenziare i cambiamenti nella distribuzione dei tempi di percorrenza in relazione al regime di traffico considerato.
Resumo:
Linear cascade testing serves a fundamental role in the research, development, and design of turbomachines as it is a simple yet very effective way to compute the performance of a generic blade geometry. These kinds of experiments are usually carried out in specialized wind tunnel facilities. This thesis deals with the numerical characterization and subsequent partial redesign of the S-1/C Continuous High Speed Wind Tunnel of the Von Karman Institute for Fluid Dynamics. The current facility is powered by a 13-stage axial compressor that is not powerful enough to balance the energy loss experienced when testing low turning airfoils. In order to address this issue a performance assessment of the wind tunnel was performed under several flow regimes via numerical simulations. After that, a redesign proposal aimed at reducing the pressure loss was investigated. This consists of a linear cascade of turning blades to be placed downstream of the test section and designed specifically for the type of linear cascade being tested. An automatic design procedure was created taking as input parameters those measured at the outlet of the cascade. The parametrization method employed Bézier curves to produce an airfoil geometry that could be imported into a CAD software so that a cascade could be designed. The proposal was simulated via CFD analysis and proved to be effective in reducing pressure losses up to 41%. The same tool developed in this thesis could be adopted to design similar apparatuses and could also be optimized and specialized for the design of turbomachines components.
Resumo:
Mathematical models and the involved methods applied to real contexts are essential tools for designing and evaluating solutions concerning physical elements and/or organizational components of transportation systems. To deal with this, the systems engineering approach is used, which considers the relationships among the transportation system elements and their performances. This approach allows quantifying the effects of transportation projects by taking into account the intrinsic complexity of the transportation system and then assessing the effects of solutions to solve – or mitigate – transportation problems. This thesis focuses on the application of the transport system engineering approach to a real city – Bologna, in northern Italy – in order to: 1. simulate the current transportation system conditions (status quo); 2. compare and assess the results obtained by two different approaches for simulating the link traffic flows on the road transportation network and their related impacts (externalities) 3. identify potential solutions to solve critical aspects, particularly in terms of traffic flow congestion and related environmental impacts (findings)
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.
Resumo:
Paged continuously.
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.
Resumo:
Fluid mixing in steady and unsteady Bow through a channel containing periodic square obstructions has been studied using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle advection to look at fluid transport out of the cavities formed between each of the obstructions. The geometry and Bow conditions were chosen from the work by Perkins (1989, M.S. Thesis, Lehigh University; 1992, Ph.D. Thesis, Lehigh University); who investigated heat transfer enhancement due to unsteady flow through such an obstructed channel. Particle advection shows that Bow regimes which are predicted to give good mixing based on snapshots of instantaneous streamline contour plots were not necessarily able to efficiently mix fluid which started in the cavity regions throughout the channel. The use of Poincare sections shows regular regions existing under these conditions which inhibit efficient fluid transport. These regular regions are found to disappear when the unsteady Bow velocity is increased. (C) 1997 Elsevier Science Ltd.
Resumo:
This review provides an overview of surface diffusion and capillary condensate flow in porous media. Emphasis has been placed on the distinction between purely surface diffusion, multilayer surface diffusion, and, capillary condensate flow.
Resumo:
The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.
Resumo:
Consider a multihop network comprising Ethernet switches. The traffic is described with flows and each flow is characterized by its source node, its destination node, its route and parameters in the generalized multiframe model. Output queues on Ethernet switches are scheduled by static-priority scheduling and tasks executing on the processor in an Ethernet switch are scheduled by stride scheduling. We present schedulability analysis for this setting.