961 resultados para Techniques: images processing
Resumo:
This work presents the archaeometallurgical study of a group of metallic artefacts found in Moinhos de Golas site, Vila Real (North of Portugal), that can generically be attributed to Proto-history (1st millennium BC, Late Bronze Age and Iron Age). The collection is composed by 35 objects: weapons, ornaments and tools, and others of difficult classification, as rings, bars and one small thin bent sheet. Some of the objects can typologically be attributed to Late Bronze Age, others are of more difficult specific attribution. The archaeometallurgical study involved x-ray digital radiography, elemental analysis by micro-energy dispersive X-ray fluorescence spectrometry and scanning electron microscopy with energy dispersive spectroscopy, microstructural observations by optical microscopy and scanning electron microscopy. The radiographic images revealed structural heterogeneities frequently related with the degradation of some artefacts and the elemental analysis showed that the majority of the artefacts was produced in a binary bronze alloy (Cu-Sn) (73%), being others produced in copper (15%) and three artefacts in brass (Cu-Zn(-Sn-Pb)). Among each type of alloy there’s certain variability in the composition and in the type of inclusions. The microstructural observations revealed that the majority of the artefacts suffered cycles of thermo-mechanical processing after casting. The diversity of metals/alloys identified was a discovery of great interest, specifically due to the presence of brasses. Their presence can be interpreted as importations related to the circulation of exogenous products during the Proto-history and/or to the deposition of materials during different moments at the site, from the transition of Late Bronze Age/Early Iron Age (Orientalizing period) onwards, as during the Roman period.
Resumo:
The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.
Resumo:
Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL).
Resumo:
Nowadays, authentication studies for paintings require a multidisciplinary approach, based on the contribution of visual features analysis but also on characterizations of materials and techniques. Moreover, it is important that the assessment of the authorship of a painting is supported by technical studies of a selected number of original artworks that cover the entire career of an artist. This dissertation is concerned about the work of modernist painter Amadeo de Souza-Cardoso. It is divided in three parts. In the first part, we propose a tool based on image processing that combines information obtained by brushstroke and materials analysis. The resulting tool provides qualitative and quantitative evaluation of the authorship of the paintings; the quantitative element is particularly relevant, as it could be crucial in solving authorship controversies, such as judicial disputes. The brushstroke analysis was performed by combining two algorithms for feature detection, namely Gabor filter and Scale Invariant Feature Transform. Thanks to this combination (and to the use of the Bag-of-Features model), the proposed method shows an accuracy higher than 90% in distinguishing between images of Amadeo’s paintings and images of artworks by other contemporary artists. For the molecular analysis, we implemented a semi-automatic system that uses hyperspectral imaging and elemental analysis. The system provides as output an image that depicts the mapping of the pigments present, together with the areas made using materials not coherent with Amadeo’s palette, if any. This visual output is a simple and effective way of assessing the results of the system. The tool proposed based on the combination of brushstroke and molecular information was tested in twelve paintings obtaining promising results. The second part of the thesis presents a systematic study of four selected paintings made by Amadeo in 1917. Although untitled, three of these paintings are commonly known as BRUT, Entrada and Coty; they are considered as his most successful and genuine works. The materials and techniques of these artworks have never been studied before. The paintings were studied with a multi-analytical approach using micro-Energy Dispersive X-ray Fluorescence spectroscopy, micro-Infrared and Raman Spectroscopy, micro-Spectrofluorimetry and Scanning Electron Microscopy. The characterization of Amadeo’s materials and techniques used on his last paintings, as well as the investigation of some of the conservation problems that affect these paintings, is essential to enrich the knowledge on this artist. Moreover, the study of the materials in the four paintings reveals commonalities between the paintings BRUT and Entrada. This observation is supported also by the analysis of the elements present in a photograph of a collage (conserved at the Art Library of the Calouste Gulbenkian Foundation), the only remaining evidence of a supposed maquete of these paintings. The final part of the thesis describes the application of the image processing tools developed in the first part of the thesis on a set of case studies; this experience demonstrates the potential of the tool to support painting analysis and authentication studies. The brushstroke analysis was used as additional analysis on the evaluation process of four paintings attributed to Amadeo, and the system based on hyperspectral analysis was applied on the painting dated 1917. The case studies therefore serve as a bridge between the first two parts of the dissertation.
Resumo:
Land cover changes over time as a result of human activity. Nowadays deforestation may be considered one of the main environmental problems. The objective of this study was to identify and characterize changes to forest cover in Venezuela between 2005-2010. Two maps of deforestation hot spots were generated on the basis of MODIS data, one using digital techniques and the other by means of direct visual interpretation by experts. These maps were validated against Landsat ETM+ images. The accuracy of the map obtained digitally was estimated by means of a confusion matrix. The overall accuracy of the maps obtained digitally was 92.5%. Expert opinions regarding the hot spots permitted the causes of deforestation to be identified. The main processes of deforestation were concentrated to the north of the Orinoco River, where 8.63% of the country's forests are located. In this region, some places registered an average annual forest change rate of between 0.72% and 2.95%, above the forest change rate for the country as a whole (0.61%). The main causes of deforestation for the period evaluated were agricultural and livestock activities (47.9%), particularly family subsistence farming and extensive farming which were carried out in 94% of the identified areas.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
Programa Doutoral em Engenharia Eletrónica e de Computadores
Resumo:
Fluorescence in situ hybridization (FISH) is based on the use of fluorescent staining dyes, however, the signal intensity of the images obtained by microscopy is seldom quantified with accuracy by the researcher. The development of innovative digital image processing programs and tools has been trying to overcome this problem, however, the determination of fluorescent intensity in microscopy images still has issues due to the lack of precision in the results and the complexity of existing software. This work presents FISHji, a set of new ImageJ methods for automated quantification of fluorescence in images obtained by epifluorescence microscopy. To validate the methods, results obtained by FISHji were compared with results obtained by flow cytometry. The mean correlation between FISHji and flow cytometry was high and significant, showing that the imaging methods are able to accurately assess the signal intensity of fluorescence images. FISHji are available for non-commercial use at http://paginas.fe.up.pt/nazevedo/.
Resumo:
As digital imaging processing techniques become increasingly used in a broad range of consumer applications, the critical need to evaluate algorithm performance has become recognised by developers as an area of vital importance. With digital image processing algorithms now playing a greater role in security and protection applications, it is of crucial importance that we are able to empirically study their performance. Apart from the field of biometrics little emphasis has been put on algorithm performance evaluation until now and where evaluation has taken place, it has been carried out in a somewhat cumbersome and unsystematic fashion, without any standardised approach. This paper presents a comprehensive testing methodology and framework aimed towards automating the evaluation of image processing algorithms. Ultimately, the test framework aims to shorten the algorithm development life cycle by helping to identify algorithm performance problems quickly and more efficiently.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2008
Resumo:
Satellite remote sensing imagery is used for forestry, conservation and environmental applications, but insufficient spatial resolution, and, in particular, unavailability of images at the precise timing required for a given application, often prevent achieving a fully operational stage. Airborne remote sensing has the advantage of custom-tuned sensors, resolution and timing, but its price prevents using it as a routine technique for the mentioned fields. Some Unmanned Aerial Vehicles might provide a “third way” solution as low-cost techniques for acquiring remotely sensed information, under close control of the end-user, albeit at the expense of lower quality instrumentation and instability. This report evaluates a light remote sensing system based on a remotely-controlled mini-UAV (ATMOS-3) equipped with a color infra-red camera (VEGCAM-1) designed and operated by CATUAV. We conducted a testing mission over a Mediterranean landscape dominated by an evergreen woodland of Aleppo pine (Pinus halepensis) and (Holm) oak (Quercus ilex) in the Montseny National Park (Catalonia, NE Spain). We took advantage of state-of-the-art ortho-rectified digital aerial imagery (acquired by the Institut Cartogràfic de Catalunya over the area during the previous year) and used it as quality reference. In particular, we paid attention to: 1) Operationality of flight and image acquisition according to a previously defined plan; 2) Radiometric and geometric quality of the images; and 3) Operational use of the images in the context of applications. We conclude that the system has achieved an operational stage regarding flight activities, although with meteorological limits set by wind speed and turbulence. Appropriate landing areas can be sometimes limiting also, but the system is able to land on small and relatively rough terrains such as patches of grassland or short matorral, and we have operated the UAV as far as 7 km from the control unit. Radiometric quality is sufficient for interactive analysis, but probably insufficient for automated processing. A forthcoming camera is supposed to greatly improve radiometric quality and consistency. Conventional GPS positioning through time synchronization provides coarse orientation of the images, with no roll information.
Resumo:
The paper discusses the utilization of new techniques ot select processes for protein recovery, separation and purification. It describesa rational approach that uses fundamental databases of proteins molecules to simplify the complex problem of choosing high resolution separation methods for multi component mixtures. It examines the role of modern computer techniques to help solving these questions.
Resumo:
El procés de fusió de dues o més imatges de la mateixa escena en una d'única i més gran és conegut com a Image Mosaicing. Un cop finalitzat el procés de construcció d'un mosaic, els límits entre les imatges són habitualment visibles, degut a imprecisions en els registres fotomètric i geomètric. L'Image Blending és l'etapa del procediment de mosaicing a la que aquests artefactes són minimitzats o suprimits. Existeixen diverses metodologies a la literatura que tracten aquests problemes, però la majoria es troben orientades a la creació de panorames terrestres, imatges artístiques d'alta resolució o altres aplicacions a les quals el posicionament de la càmera o l'adquisició de les imatges no són etapes rellevants. El treball amb imatges subaquàtiques presenta desafiaments importants, degut a la presència d'scattering (reflexions de partícules en suspensió) i atenuació de la llum i a condicions físiques extremes a milers de metres de profunditat, amb control limitat dels sistemes d'adquisició i la utilització de tecnologia d'alt cost. Imatges amb il·luminació artificial similar, sense llum global com la oferta pel sol, han de ser unides sense mostrar una unió perceptible. Les imatges adquirides a gran profunditat presenten una qualitat altament depenent de la profunditat, i la seva degradació amb aquest factor és molt rellevant. El principal objectiu del treball és presentar dels principals problemes de la imatge subaquàtica, seleccionar les estratègies més adequades i tractar tota la seqüència adquisició-procesament-visualització del procés. Els resultats obtinguts demostren que la solució desenvolupada, basada en una Estratègia de Selecció de Límit Òptim, Fusió en el Domini del Gradient a les regions comunes i Emfatització Adaptativa d'Imatges amb baix nivell de detall permet obtenir uns resultats amb una alta qualitat. També s'ha proposat una estratègia, amb possibilitat d'implementació paral·lela, que permet processar mosaics de kilòmetres d'extensió amb resolució de centímetres per píxel.