625 resultados para THERMOLUMINESCENCE DOSIMETRY PHOSPHOR
Resumo:
A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.
Resumo:
Mi proyecto de tesis se basaba en el estudio del papel de profilina 1 en la formación de lamelas, para ello generamos una proteína recombinante y transducible, con el objetivo de poder modificar los niveles endógenos de profilina. Objetivos: i-caracterización bioquímica los tres sitios de union conocidos de la proteína de transducción, el sitio de unión a fosfo-inocitoles (PIP), el de unión a actina (Ac) y el de unión a poli-prolinas (PLP). ii-estudio de la polimerización in-vitro de actina - PTD4-Profilina1 iii-estudio de las proteínas componentes de lamelas inducidas por PTD4-Profilina1. Plan de trabajo: i-Para comprobar la funcionalidad los 3 sitios de unión fueron necesarias las primeras 6 semanas, ya que en primer lugar había que expresar y purificar el peptido Srv2, necesario para el ensayo de PLP. En segundo lugar, se obtuvieron los datos de las concentraciones adecuadas de lípidos para el ensayo de fosfo-inocitoles y por ultimo, se purifico la actina necesaria para el ensayo de unión a actina. Una vez establecida la funcionalidad de la proteína, se procedió a: ii-el estudio de polimerización in-vitro, que llevo 2 semanas. Demostrando que in-vitro era capaz de inhibir la polimerización de una manera similar a la endógena. Una vez terminados estos ensayos, se procedio a: iii-la caracterización inmunohistoquímica de las proteínas componentes de la lamela que fue llevado a cabo en 4 semanas. Para ello se usaron anticuerpos contra: alfa-actinina, talina, vinculina, ENA/Vasp y paxillina. Conclusiones: i-las propiedades bioquímicas de la PTD4-Profilina1 son similares a las de la profilina endógena. ii-los estudios de polimerización indican que la polimerización se produce de manera similar a la endogena. iii-los ensayos de inmunohistoquímica sugieren que, talina esta ausente y que las demás están presentes aunque en menor concentración y con otra distribución comparadas con los controles.
Resumo:
In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.
Resumo:
INTRODUCTION: The phase III EORTC 22033-26033/NCIC CE5 intergroup trial compares 50.4 Gy radiotherapy with up-front temozolomide in previously untreated low-grade glioma. We describe the digital EORTC individual case review (ICR) performed to evaluate protocol radiotherapy (RT) compliance. METHODS: Fifty-eight institutions were asked to submit 1-2 randomly selected cases. Digital ICR datasets were uploaded to the EORTC server and accessed by three central reviewers. Twenty-seven parameters were analysed including volume delineation, treatment planning, organ at risk (OAR) dosimetry and verification. Consensus reviews were collated and summary statistics calculated. RESULTS: Fifty-seven of seventy-two requested datasets from forty-eight institutions were technically usable. 31/57 received a major deviation for at least one section. Relocation accuracy was according to protocol in 45. Just over 30% had acceptable target volumes. OAR contours were missing in an average of 25% of cases. Up to one-third of those present were incorrectly drawn while dosimetry was largely protocol compliant. Beam energy was acceptable in 97% and 48 patients had per protocol beam arrangements. CONCLUSIONS: Digital RT plan submission and review within the EORTC 22033-26033 ICR provide a solid foundation for future quality assurance procedures. Strict evaluation resulted in overall grades of minor and major deviation for 37% and 32%, respectively.
Resumo:
A wide variation in patient exposure has been observed in interventional radiology and cardiology. The purpose of this study was to investigate the patient dose from fluoroscopy-guided procedures performed in non-academic centres when compared with academic centres. Four procedures (coronary angiography, percutaneous coronary intervention, angiography of the lower limbs and percutaneous transluminal angioplasty of the lower limbs) were evaluated. Data on the dose-area product, fluoroscopy time and number of images for 1000 procedures were obtained from 23 non-academic centres and compared with data from 5 academic centres. No differences were found for cardiology procedures performed in non-academic centres versus academic ones. However, significantly lower doses were delivered to patients for procedures of the lower limbs when they were performed in non-academic centres. This may be due to more complex procedures performed in the academic centres. Comparison between the centres showed a great variation in the patient dose for these lower limb procedures.
Resumo:
The main objective of WP1 of the ORAMED (Optimization of RAdiation protection for MEDical staff) project is to obtain a set of standardised data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimise staff protection. A coordinated measurement program in different hospitals in Europe will help towards this direction. This study aims at analysing the first results of the measurement campaign performed in IR and IC procedures in 34 European hospitals. The highest doses were found for pacemakers, renal angioplasties and embolisations. Left finger and wrist seem to receive the highest extremity doses, while the highest eye lens doses are measured during embolisations. Finally, it was concluded that it is difficult to find a general correlation between kerma area product and extremity or eye lens doses.
Resumo:
The age of the patient is of prime importance when assessing the radiological risk to patients due to medical X-ray exposures and the total detriment to the population due to radiodiagnostics. In order to take into account the age-specific radiosensitivity, three age groups are considered: children, adults and the elderly. In this work, the relative number of examinations carried out on paediatric and geriatric patients is established, compared with adult patients, for radiodiagnostics as a whole, for dental and medical radiology, for 8 radiological modalities as well as for 40 types of X-ray examinations. The relative numbers of X-ray examinations are determined based on the corresponding age distributions of patients and that of the general population. Two broad groups of X-ray examinations may be defined. Group A comprises conventional radiography, fluoroscopy and computed tomography; for this group a paediatric patient undergoes half the number of examinations as that of an adult, and a geriatric patient undergoes 2.5 times more. Group B comprises angiography and interventional procedures; for this group a paediatric patient undergoes a one-fourth of the number of examinations carried out on an adult, and a geriatric patient undergoes five times more.
Resumo:
PURPOSE: It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated 131I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). METHODS: Patients received standard weekly therapy with rituximab (375 mg/m2) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq 131I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post 131I-rituximab injection prior to the second and third injections, respectively. RESULTS: A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T(1/2)beta, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T(1/2) of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. CONCLUSION: These results show that the biodistribution and tissue kinetics of 131I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy. RIT radiation doses can therefore be reliably extrapolated from a preceding dosimetry study.
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
The aim of this work is to compare two methods used for determining the proper shielding of computed tomography (CT) rooms while considering recent technological advances in CT scanners. The approaches of the German Institute for Standardisation and the US National Council on Radiation Protection and Measurements were compared and a series of radiation measurements were performed in several CT rooms at the Lausanne University Hospital. The following three-step procedure is proposed for assuring sufficient shielding of rooms hosting new CT units with spiral mode acquisition and various X-ray beam collimation widths: (1) calculate the ambient equivalent dose for a representative average weekly dose length product at the position where shielding is required; (2) from the maximum permissible weekly dose at the location of interest, calculate the transmission factor F that must be taken to ensure proper shielding and (3) convert the transmission factor into a thickness of lead shielding. A similar approach could be adopted to use when designing shielding for fluoroscopy rooms, where the basic quantity would be the dose area product instead of the load of current (milliampere-minute).
Resumo:
Excessive exposure to solar UV light is the main cause of skin cancers in humans. UV exposure depends on environmental as well as individual factors related to activity. Although outdoor occupational activities contribute significantly to the individual dose received, data on effective exposure are scarce and limited to a few occupations. A study was undertaken in order to assess effective short-term exposure among building workers and characterize the influence of individual and local factors on exposure. The effective exposure of construction workers in a mountainous area in the southern part of Switzerland was investigated through short-term dosimetry (97 dosimeters). Three altitudes, of about 500, 1500 and 2500 m were considered. Individual measurements over 20 working periods were performed using Spore film dosimeters on five body locations. The postural activity of workers was concomitantly recorded and static UV measurements were also performed. Effective exposure among building workers was high and exceeded occupational recommendations, for all individuals for at least one body location. The mean daily UV dose in plain was 11.9 SED (0.0-31.3 SED), in middle mountain 21.4 SED (6.6-46.8 SED) and in high mountain 28.6 SED (0.0-91.1 SED). Measured doses between workers and anatomical locations exhibited a high variability, stressing the role of local exposure conditions and individual factors. Short-term effective exposure ranged between 0 and 200% of ambient irradiation, indicating the occurrence of intense, subacute exposures. A predictive irradiation model was developed to investigate the role of individual factors. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure, and were also found to account more than altitude on the total variance of effective daily exposures. Targeted sensitization actions through professional information channels and specific prevention messages are recommended. Altitude outdoor workers should also benefit from preventive medical examination.
Resumo:
Quality assurance programmes are becoming a common practice in the field of mammography. At the present time several recommendations exist and different test objects are used to optimize this radiological procedure. The goal of this study was to check if geographically distant centres using different quality control procedures were comparable when using a common objective way of assessing image quality. The results show that consensus still needs to be found among radiologists to reach a satisfactory level of harmony between patient doses and image quality in Europe.
Resumo:
Résumé Objectifs : La thérapie photodynamique a pour but la destruction sélective du tissu néoplasique par interaction de lumière, d'oxygène et d'une substance photosensibilisatrice (la Protoporphyrine IX dans notre étude). Malgré une accumulation sélective du photosensibilisateur dans le tissu tumoral, la thérapie photodynamique du carcinome urothélial de la vessie peut endommager les cellules normales de l'épithélium urinaire. La prévention de ces lésions est importante pour la régénération de la muqueuse. Notre étude sur un modèle in vitro d'urothélium porcin étudie l'influence de la concentration du photosensibilisateur, des paramètres d'irradiation et de la production d'intermédiaires réactifs de l'oxygène (ROS) sur les effets photodynamique. Le but était de déterminer les conditions seuil pour épargner l'urothélium sain. Méthode: Dans une chambre de culture transparente à deux compartiments, des muqueuses vésicales de porc maintenues en vie ont été incubées avec une solution d'hexyl-aminolévulinate (HAL), le précurseur de la Protoporphyrine IX. Ces muqueuses ont ensuite été irradiées avec des doses lumineuses croissantes en lumière bleue et en lumière blanche, et les altérations cellulaires ont été évaluées par microscopie électronique à balayage et par un colorant fluorescent, le Sytox green. Nous avons également évalué la production d'intermédiaires réactifs de l'oxygène parla mesure de la fluorescence intracellulaire de Rhodamine 123 (R123), produit de l'oxydation de la Dihydrorhodamine 123 (DHR123) non fluorescente. Ces valeurs ont été corrélées avec celles du photo blanchiment de la PAIX. Résultats : Le taux de mortalité cellulaire était dépendant de la concentration de PAIX. Après 3 heures d'incubation, la valeur seuil de dose lumineuse pour la lumière bleu était de 0.15 et 0.75 J/cm2 (irradiance 30 et 75 mW/cm2, respectivement) et pour la lumière blanche de 0.55 J/cm2 (irradiante 30 mW/cm2). Le taux de photo blanchiment était inversement proportionnel à l'irradiante. Le système de détection des intermédiaires réactifs de l'oxygène DHR123/R123 a démontré une bonne corrélation avec les valeurs seuil pour toutes les conditions d'irradiation utilisées. Conclusions : Nous avons déterminé les doses lumineuses permettant d'épargner 50% des cellules urothéliales saines. L'utilisation d'une faible irradiante associée à des systèmes permettant de mesurer la production d'intermédiaires réactifs de l'oxygène dans les tissus irradiés pourrait améliorer la dosimétrie in vivo et l'efficacité de la thérapie photodynamique. Abstract Background and Objectives: Photodynamic therapy of superficial bladder cancer may cause damages to the normal surrounding bladder wall. Prevention of these is important for bladder healing. We studied the influence of photosensitizes concentration, irradiation parameters and production of reactive oxygen species (ROS) on the photodynamically induced damage in the porcine urothelium in vitro. The aim was to determine the threshold conditions for the cell survival. Methods: Living porcine bladder mucosae were incubated with solution of hexylester of 5-aminolevulinic acid (HAL). The mucosae were irradiated with increasing doses and cell alterations were evaluated by scanning electron microscopy and by Sytox green fluorescence. The urothelial survival score was correlated with Protoporphyrin IX (PpIX) photobleaching and intracellular fluorescence of Rhodamine 123 reflecting the ROS production. Results: The mortality ratio was dependent on PpIX concentration. After 3 hours of incubation, the threshold radiant exposures for blue light were 0.15 and 0.75 J/cm2 (irradiance 30 and 75 mW/cm2, respectively) and for white light 0.55 J/cm2 (irradiance 30 mW/cm2). Photobleaching rate increased with decreasing irradiance. Interestingly, the DHR123/R123 reporter system correlated well with the threshold exposures under all conditions used. Conclusions: we have determined radiant exposures sparing half of normal urothelial cells. We propose that the use of low irradiance combined with systems reporting the ROS production in the irradiated tissue could improve the in vivo dosimetry and optimize the PDT.
Resumo:
Monitoring of internal exposure for nuclear medicine workers requires frequent measurements due to the short physical half-lives of most radionuclides used in this field. The aim of this study was to develop screening measurements performed at the workplace by local staff using standard laboratory instrumentation, to detect whether potential intake has occurred. Such measurements do not enable to determine the committed effective dose, but are adequate to verify that a given threshold is not exceeded. For radioiodine, i.e. (123)I, (124)I, (125)I and (131)I, a calibrated surface contamination monitor is placed in front of the thyroid to detect whether the activity threshold has been exceeded. For radionuclides with very short physical half-lives (≤6 h), such as (99m)Tc and those used in positron emission tomography imaging, i.e. (11)C, (15)O, (18)F and (68)Ga, screening procedures consist in performing daily measurements of the ambient dose rate in front of the abdomen. Other gamma emitters used for imaging, i.e. (67)Ga, (111)In and (201)Tl, are measured with a scintillation detector located in front of the thorax. For pure beta emitters, i.e. (90)Y and (169)Er, as well as beta emitters with low-intensity gamma rays, i.e. (153)Sm, (177)Lu, (186)Re and (188)Re, the procedure consists in measuring hand contamination immediately after use. In Switzerland, screening procedures have been adopted by most nuclear medicine services since such measurements enable an acceptable monitoring while taking into account practical and economic considerations.
Resumo:
PURPOSE: Since 1982, the Radiation Oncology Group of the EORTC (EORTC ROG) has pursued an extensive Quality Assurance (QA) program involving all centres actively participating in its clinical research. The first step is the evaluation of the structure and of the human, technical and organisational resources of the centres, to assess their ability to comply with the current requirements for high-tech radiotherapy (RT). MATERIALS AND METHODS: A facility questionnaire (FQ) was developed in 1989 and adapted over the years to match the evolution of RT techniques. We report on the contents of the current FQ that was completed online by 98 active EORTC ROG member institutions from 19 countries, between December 2005 and October 2007. RESULTS: Similar to the data collected previously, large variations in equipment, staffing and workload between centres remain. Currently only 15 centres still use a Cobalt unit. All centres perform 3D Conformal RT, 79% of them can perform IMRT and 54% are able to deliver stereotactic RT. An external reference dosimetry audit (ERDA) was performed in 88% of the centres for photons and in 73% for electrons, but it was recent (<2 years) in only 74% and 60%, respectively. CONCLUSION: The use of the FQ helps maintain the minimum quality requirements within the EORTC ROG network: recommendations are made on the basis of the analysis of its results. The present analysis shows that modern RT techniques are widely implemented in the clinic but also that ERDA should be performed more frequently. Repeated assessment using the FQ is warranted to document the future evolution of the EORTC ROG institutions.