998 resultados para TEMPORAL STEM
Resumo:
Aim Reduced bone mineral density, impaired cardiovascular fitness, and increased risk of obesity are well-known late effects of Hematopoietic Stem Cell Transplantation (HSCT) in survivors of childhood cancer. These comorbidities can be mitigated through physical activity and limiting screen-time (ST). This study aims to increase the understanding of physical activity and ST behaviours for children following HSCT. Method Children were recruited from two oncology follow-up clinics and completed a questionnaire on their physical activity levels and screen-time. Children were classified as short (≤2yrs) and long term (>2yrs) survivors. Results Fifty-eight children were eligible, of whom forty children age 6 to 18 years (60% males) participated in the study. Less than half (47.5%) met the daily recommendations for physical activity and one third met the ST recommendations. Late survivors reported higher daily physical activity and less ST than early survivors. Among late survivors, females reported higher daily physical activity and less ST than males. Conclusions Our findings suggest that the majority of children following HSCT were not sufficiently active and had excessive screen-time; however this was comparable to healthy populations. Appropriately designed physical activity and screen-time intervention programs should be explored early following transplant for children undergoing HSCT.
Resumo:
This article considers the integral role played by patent law in respect of stem cell research. It highlights concerns about commercialization, access to essential medicines and bioethics. The article maintains that there is a fundamental ambiguity in the Patents Act 1990 (Cth) as to whether stem cell research is patentable subject matter. There is a need to revise the legislation in light of the establishment of the National Stem Cell Centre and the passing of the Research Involving Embryos Act 2002 (Cth). The article raises concerns about the strong patent protection secured by the Wisconsin Alumni Research Foundation and Geron Corporation in respect of stem cell research in the United States. It contends that a number of legal reforms could safeguard access to stem cell lines, and resulting drugs and therapies. Finally, this article explores how ethical concerns are addressed within the framework of the European Biotechnology Directive. It examines the decision of the European Patent Office in relation to the so-called Edinburgh patent, and the inquiry of the European Group on Ethics in Science and New Technologies into The Ethical Aspects of Patenting Involving Human Stem Cells.
Resumo:
Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL).
Resumo:
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.
Resumo:
Engineering-based modeling activities provide a rich source of meaningful situations that capitalize on and extend students’ routine learning. By integrating such activities within existing curricula, students better appreciate how their school learning in mathematics and science applies to problems in the outside world...
Resumo:
Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.
Resumo:
This project was a step forward in applying statistical methods and models to provide new insights for more informed decision-making at large spatial scales. The model has been designed to address complicated effects of ecological processes that govern the state of populations and uncertainties inherent in large spatio-temporal datasets. Specifically, the thesis contributes to better understanding and management of the Great Barrier Reef.
Resumo:
This paper reports an innovative and systemic approach to implementing ICT intervention to support enhancement of teaching and learning of STEM subjects in developing countries. The need for adopting ICT was 2 fold: a lack of availability of qualified STEM secondary teachers and a lack of quality teaching and learning resources to assist teachers and students. ICT was seen as being able to impact on both issues. The intervention involved developing sustainable network design including equipment choices, providing high quality e-learning resources and human resource development including teacher training. The intervention has gradually been accepted by teachers, students, and parents and institutionalized as a key feature of the secondary STEM education in the case study country.
Resumo:
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.
Resumo:
Purpose During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. Methods A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. Results SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. Conclusions SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.
Resumo:
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.
Resumo:
Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.