914 resultados para Speech Recognition System using LPC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a rule-based automatic syllabifier for Danish is described using the Maximal Onset Principle. Prior success rates of rule-based methods applied to Portuguese and Catalan syllabification modules were on the basis of this work. The system was implemented and tested using a very small set of rules. The results gave rise to 96.9% and 98.7% of word accuracy rate, contrary to our initial expectations, being Danish a language with a complex syllabic structure and thus difficult to be rule-driven. Comparison with data-driven syllabification system using artificial neural networks showed a higher accuracy rate of the former system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction The early diagnosis of mycobacterial infections is a critical step for initiating treatment and curing the patient. Molecular analytical methods have led to considerable improvements in the speed and accuracy of mycobacteria detection. Methods The purpose of this study was to evaluate a multiplex polymerase chain reaction system using mycobacterial strains as an auxiliary tool in the differential diagnosis of tuberculosis and diseases caused by nontuberculous mycobacteria (NTM) Results Forty mycobacterial strains isolated from pulmonary and extrapulmonary origin specimens from 37 patients diagnosed with tuberculosis were processed. Using phenotypic and biochemical characteristics of the 40 mycobacteria isolated in LJ medium, 57.5% (n=23) were characterized as the Mycobacterium tuberculosis complex (MTBC) and 20% (n=8) as nontuberculous mycobacteria (NTM), with 22.5% (n=9) of the results being inconclusive. When the results of the phenotypic and biochemical tests in 30 strains of mycobacteria were compared with the results of the multiplex PCR, there was 100% concordance in the identification of the MTBC and NTM species, respectively. A total of 32.5% (n=13) of the samples in multiplex PCR exhibited a molecular pattern consistent with NTM, thus disagreeing with the final diagnosis from the attending physician. Conclusions Multiplex PCR can be used as a differential method for determining TB infections caused by NTM a valuable tool in reducing the time necessary to make clinical diagnoses and begin treatment. It is also useful for identifying species that were previously not identifiable using conventional biochemical and phenotypic techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest projecte es fa una introducció als reconeixedors de la parla, el seu funcionament i la seva base matemàtica. Un cop tots els conceptes han quedat clars, es mostra el mètode de creació que hem seguit per obtenir el nostre propi reconeixedor de la parla, utilitzant les eines HTK, en català. S’avaluen les seves virtuts i els seus defectes a través de diferents proves realitzades als seus components. A més a més, el projecte arrodoneix la feina implementant un sistema de dictat automàtic que explota el reconeixedor de la parla utilitzant Julius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of the study: Reconstruction of the anterior cruciate ligament (ACL) controls laxity but does not enable restoration of strictly normal 3D kinematics. The purpose of this study was to compare the kinematics of the pathological knee with that of the healthy knee after ACL plasty. This study applied a new ambulatory system using miniature captors. Material and method: Five patients with an isolated injury of the ACL participated in this study. The patients were assessed after injury (T1), at five months (T2), and at 14 months (T3) after surgery. The assessment included laxity (KT-1000), the IKDC score and the Lysholm score. The 3D angles of the knees were measured when walking 30 m on flat ground using a system composed of to small inertia units (3D accelerometer and 3D gyroscope) and a portable recorder. Functional settings were optimised and validating to ensure easy precise measurement of the 3D angles. Symmetry of the two knees was quantified using a symmetry index (SI) (difference in amplitude normalised in relation to mean amplitude) and the correlation coefficient CC. Results: Clinical indicators improved during the follow-up (IKDC T1: 3C, 2C; T2: 5B; T3: 2A, 3B; subjective IKD: 53-95; Lysholm 67-96). Mean laxity improved from 8.6m to 2.5 mm. The gait analysis showed increased symmetry in terms of amplitude for flexion-extension (SI: −17% at T1, −1% at T2, 1% at T3), and an increase in symmetry in terms of the rotation signature (CC: 0.16 at T1, 0.99 at T2, 0.99 at T3). There was no trend to varus-valgus. Discussion: This study demonstrates the clinical application of the new ambulatory system for measuring 3D angles of the knee joint. Joint symmetry increased after ACL plasty but still showed some perturbation at 14 months. The results observed here are in agreement with the literature. Other patients and other types of gait are being analysed. Conclusion: This portable system allows gait analysis outside the laboratory, before and after ACL injury. It is very useful for follow-up after surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a series of experiments in which we start with English to French and English to Japanese versions of an Open Source rule-based speech translation system for a medical domain, and bootstrap correspondign statistical systems. Comparative evaluation reveals that the rule-based systems are still significantly better than the statistical ones, despite the fact that considerable effort has been invested in tuning both the recognition and translation components; also, a hybrid system only marginally improved recall at the cost of a los in precision. The result suggests that rule-based architectures may still be preferable to statistical ones for safety-critical speech translation tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations