959 resultados para Smart Vending Machine, Automation, Programmable Logic Controllers, Creativity, Innovation
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.
Resumo:
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique. A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but inheriting most of the digital logic present in the current DAQ board discussed in this thesis. For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.
Resumo:
Smart Environments are currently considered a key factor to connect the physical world with the information world. A Smart Environment can be defined as the combination of a physical environment, an infrastructure for data management (called Smart Space), a collection of embedded systems gathering heterogeneous data from the environment and a connectivity solution to convey these data to the Smart Space. With this vision, any application which takes advantages from the environment could be devised, without the need to directly access to it, since all information are stored in the Smart Space in a interoperable format. Moreover, according to this vision, for each entity populating the physical environment, i.e. users, objects, devices, environments, the following questions can be arise: “Who?”, i.e. which are the entities that should be identified? “Where?” i.e. where are such entities located in physical space? and “What?” i.e. which attributes and properties of the entities should be stored in the Smart Space in machine understandable format, in the sense that its meaning has to be explicitly defined and all the data should be linked together in order to be automatically retrieved by interoperable applications. Starting from this the location detection is a necessary step in the creation of Smart Environments. If the addressed entity is a user and the environment a generic environment, a meaningful way to assign the position, is through a Pedestrian Tracking System. In this work two solution for these type of system are proposed and compared. One of the two solution has been studied and developed in all its aspects during the doctoral period. The work also investigates the problem to create and manage the Smart Environment. The proposed solution is to create, by means of natural interactions, links between objects and between objects and their environment, through the use of specific devices, i.e. Smart Objects
Resumo:
The research activity focused on the study, design and evaluation of innovative human-machine interfaces based on virtual three-dimensional environments. It is based on the brain electrical activities recorded in real time through the electrical impulses emitted by the brain waves of the user. The achieved target is to identify and sort in real time the different brain states and adapt the interface and/or stimuli to the corresponding emotional state of the user. The setup of an experimental facility based on an innovative experimental methodology for “man in the loop" simulation was established. It allowed involving during pilot training in virtually simulated flights, both pilot and flight examiner, in order to compare the subjective evaluations of this latter to the objective measurements of the brain activity of the pilot. This was done recording all the relevant information versus a time-line. Different combinations of emotional intensities obtained, led to an evaluation of the current situational awareness of the user. These results have a great implication in the current training methodology of the pilots, and its use could be extended as a tool that can improve the evaluation of a pilot/crew performance in interacting with the aircraft when performing tasks and procedures, especially in critical situations. This research also resulted in the design of an interface that adapts the control of the machine to the situation awareness of the user. The new concept worked on, aimed at improving the efficiency between a user and the interface, and gaining capacity by reducing the user’s workload and hence improving the system overall safety. This innovative research combining emotions measured through electroencephalography resulted in a human-machine interface that would have three aeronautical related applications: • An evaluation tool during the pilot training; • An input for cockpit environment; • An adaptation tool of the cockpit automation.
Resumo:
The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority.
Resumo:
La nascita della Internet of Things, come conseguenza dell'aumento della capacità di calcolo e adozione di connettività in nuovi dispositivi, ha permesso l'apporto di nuove tecnologie negli oggetti di uso quotidiano e ha cambiano il modo in cui le persone utilizzano e interagiscono con questi oggetti. La Home Automation, da sempre orientata al controllo locale e remoto di apparecchiature domestiche, non ha mai raggiunto una grande diffusione per colpa del costo elevato, una controproducente chiusura rispetto ad altri sistemi e una certa difficoltà nella sua programmazione da parte dei possibili utenti. Le possibilità offerte dalla IoT e i limiti della Home Automation hanno suggerito lo sviluppo di un sistema in grado si superare queste limitazioni sfruttando le tecnologie più adatte a integrare Smart Object e sistemi, gli uni con gli altri, in maniera semplice e rapida. Il progetto e lo sviluppo di una soluzione reale di Home Automation basata su un impianto domotico commerciale ha permesso di dimostrare come strumenti opensource e tecnologie orientate alla IoT consentano, se opportunamente integrate, di migliorare sia la fruibilità dei sistemi domotici, attraverso la maggiore apertura verso altri sistemi, sia l'interazione con l'utente che sarà in grado di creare in modo semplice e diretto scenari di utilizzo sempre nuovi.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.
Resumo:
Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.
Resumo:
Compilation techniques such as those portrayed by the Warren Abstract Machine(WAM) have greatly improved the speed of execution of logic programs. The research presented herein is geared towards providing additional performance to logic programs through the use of parallelism, while preserving the conventional semantics of logic languages. Two áreas to which special attention is given are the preservation of sequential performance and storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. Accordingly, the techniques used for supporting parallelism are efficient extensions of those which have brought high inferencing speeds to sequential implementations. At a lower level, special attention is also given to design and simulation detail and to the architectural implications of the execution model behavior. This paper offers an overview of the basic concepts and techniques used in the parallel design, simulation tools used, and some of the results obtained to date.
Resumo:
This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staff
Resumo:
Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
The implementation of abstract machines involves complex decisions regarding, e.g., data representation, opcodes, or instruction specialization levéis, all of which affect the final performance of the emulator and the size of the bytecode programs in ways that are often difficult to foresee. Besides, studying alternatives by implementing abstract machine variants is a time-consuming and error-prone task because of the level of complexity and optimization of competitive implementations, which makes them generally difficult to understand, maintain, and modify. This also makes it hard to genérate specific implementations for particular purposes. To ameliorate those problems, we propose a systematic approach to the automatic generation of implementations of abstract machines. Different parts of their definition (e.g., the instruction set or the infernal data and bytecode representation) are kept sepárate and automatically assembled in the generation process. Alternative versions of the abstract machine are therefore easier to produce, and variants of their implementation can be created mechanically, with specific characteristics for a particular application if necessary. We illustrate the practicality of the approach by reporting on an implementation of a generator of production-quality WAMs which are specialized for executing a particular fixed (set of) program(s). The experimental results show that the approach is effective in reducing emulator size.