907 resultados para Salivary proteins and peptides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A benzothiazole-derived compound (4a) designed to mimic the C-alpha-C-beta bond vectors and terminal functionalities of Lys2, TyrI3 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low PM binding affinity to N-type VGCCs (IC50 = 1.9 muM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC50 = 4.1 muM) showed a greater than 25-fold selectivity for the N-type channel. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurons in pelvic ganglia receive nicotinic excitatory post-synaptic potentials (EPSPs) from sacral preganglionic neurons via the pelvic nerve, lumbar preganglionic neurons via the hypogastric nerve or both. We tested the effect of a range of calcium channel antagonists on EPSPs evoked in paracervical ganglia of female guinea-pigs after pelvic or hypogastric nerve stimulation. omega-Conotoxin GVIA (CTX GVIA, 100 nM) or the novel N-type calcium channel antagonist, CTX CVID (100 nM) reduced the amplitude of EPSPs evoked after pelvic nerve stimulation by 50-75% but had no effect on EPSPs evoked by hypogastric nerve stimulation. Combined addition of CTX GVIA and CTX CVID was no more effective than either antagonist alone. EPSPs evoked by stimulating either nerve trunk were not inhibited by the P/Q calcium channel antagonist, omega-agatoxin IVA (100 nM), nor the L-type calcium channel antagonist, nifedipine (30 muM). SNX 482 (300 nM), an antagonist at some R-type calcium channels, inhibited EPSPs after hypogastric nerve stimulation by 20% but had little effect on EPSPs after pelvic nerve stimulation. Amiloride (100 muM) inhibited EPSPs after stimulation of either trunk by 40%, while nickel (100 muM) was ineffective. CTX GVIA or CTX CVID (100 nM) also slowed the rate of action potential repolarization and reduced afterhyperpolarization amplitude in paracervical neurons. Thus, release of transmitter from the terminals of sacral preganglionic neurons is largely dependent on calcium influx through N-type calcium channels, although an unknown calcium channel which is resistant to selective antagonists also contributes to release. Release of transmitter from lumbar preganglionic neurons does not require calcium entry through either conventional N-type calcium channels or the variant CTX CVID-sensitive N-type calcium channel and seems to be mediated largely by a novel calcium channel. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cone snails have evolved a vast array of peptide toxins for prey capture and defence. These peptides are directed against a wide variety of pharmacological targets, making them an invaluable source of ligands for studying the properties of these targets in normal and diseased states. A number of these peptides have shown efficacy in vivo, including inhibitors of calcium channels, the norepinephrine transporter, nicotinic acetylcholine receptors, NMDA receptors and neurotensin receptors, with several having undergone pre-clinical or clinical development for the treatment of pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 The effects of calcium channel blockers on co-transmission from different populations of autonomic vasomotor neurons were studied on isolated segments of uterine artery and vena cava from guinea-pigs. 2 Sympathetic, noradrenergic contractions of the uterine artery (produced by 200 pulses at 1 or 10 Hz; 600 pulses at 20 Hz) were abolished by the N-type calcium channel blocker omega-conotoxin (CTX) GVIA at 1-10 nM. 3 Biphasic sympathetic contractions of the vena cava (600 pulses at 20 Hz) mediated by noradrenaline and neuropeptide Y were abolished by 10 nM CTX GVIA. 4 Neurogenic relaxations of the uterine artery (200 pulses at 10 Hz) mediated by neuronal nitric oxide and neuropeptides were reduced < 50% by CTX GVIA 10-100 nM. 5 Capsaicin (3 muM) did not affect the CTX GVIA-sensitive or CTX GVIA-resistant neurogenic relaxations of the uterine artery. 6 The novel N-type blocker CTX CVID (100-300 nM), P/Q-type blockers agatoxin IVA (10-100 nM) or CTX CVIB (100 nM), the L-type blocker nifedipine (10 muM) or the 'R-type' blocker SNX-482 (100 nM), all failed to reduce CTX GVIA-resistant relaxations. The T-type channel blocker NiCl2 (100-300 muM) reduced but did not abolish the remaining neurogenic dilations. 7 Release of different neurotransmitters from the same autonomic vasomotor axon depends on similar subtypes of calcium channels. N-type channels are responsible for transmitter release from vasoconstrictor neurons innervating a muscular artery and capacitance vein, but only partly mediate release of nitric oxide and neuropeptides from pelvic vasodilator neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at physiological holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited closed-state inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar ultra-slow inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting ultra-slow and closed-state inactivation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP and glutamate are fast excitatory neurotransmitters in the central nervous system acting primarily on ionotropic P2X and glutamate [N-methyl-D-aspartate (NMDA) and non-NMDA] receptors, respectively. Both neurotransmitters regulate synaptic plasticity and long-term potentiation in hippocampal neurons. NMDA receptors are responsible primarily for the modulatory action of glutamate, but the mechanism underlying the modulatory effect of ATP remains uncertain. In the present study, the effect of ATP on recombinant NR1a + 2A, NR1a + 2B, and NR1a + 2C NMDA receptors expressed in Xenopus laevis oocytes was investigated. ATP inhibited NR1a + 2A and NR1a + 2B receptor currents evoked by low concentrations of glutamate but potentiated currents evoked by saturating glutamate concentrations. In contrast, ATP potentiated NR1a + 2C receptor currents evoked by nonsaturating glutamate concentrations. ATP shifted the glutamate concentration-response curve to the right, indicating a competitive interaction at the agonist binding site. ATP inhibition and potentiation of glutamate-evoked currents was voltage-independent, indicating that ATP acts outside the membrane electric field. Other nucleotides, including ADP, GTP, CTP, and UTP, inhibited glutamate-evoked currents with different potencies, revealing that the inhibition is dependent on both the phosphate chain and nucleotide ring structure. At high concentrations, glutamate outcompetes ATP at the agonist binding site, revealing a potentiation of the current. This effect must be caused by ATP binding at a separate site, where it acts as a positive allosteric modulator of channel gating. A simple model of the NMDA receptor, with ATP acting both as a competitive antagonist at the glutamate binding site and as a positive allosteric modulator at a separate site, reproduced the main features of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA ( ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hybrid screen and the interaction between Osh7p and Vps4p appears to be regulated by ergosterol. Deletion of VPS4 induced a dramatic increase in the membrane-associated pools of Osh6p and Osh7p and also caused a decrease in sterol esterification, which was suppressed by overexpression of OSH7. Lastly, overexpression of the coiled-coil domain of Osh7p (Osh7pCC) resulted in a multi-vesicular body sorting defect, suggesting a dominant negative role of Osh7pCC possibly through inhibiting Vps4p function. Our data suggest that a common mechanism may exist for AAA proteins to regulate the membrane association of yeast OSBP proteins and that these two protein families may function together to control subcellular lipid transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chromatographic method was developed for the determination of tryptophan content in food and feed proteins. The method involves separation and quantitation of tryptophan (released from protein by alkaline hydrolysis with NaOH) by isocratic ion-exchange chromatography with O-phthalaldehyde derivatization followed by fluorescence detection. In this procedure, chromatographic separation of the tryptophan and alpha-methyl tryptophan, the internal standard, was complete in 15 min, without any interference from other compounds. The precision of the method was 1-4%, relative standard deviation. Accuracy was validated by agreement with the value for chicken egg white lysozyme, a sequenced protein, and by quantitative recoveries after spiking with lysozyme. The method allows determination in a range of feed proteins, containing varied concentrations of tryptophan, and is applicable to systems used for routine amino acid analysis by ion-exchange chromatography. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease activated receptors (PARs) are a category of G-protein coupled receptors (GPCRs) implicated in the progression of a wide range of diseases, including thrombosis, inflammatory disorders, and proliferative diseases. Signal transduction via PARs proceeds via an unusual activation mechanism. Instead of being activated through direct interaction with an extracellular signal like most GPCRs. they are self-activated following cleavage of their extracellular N-terminus by serine proteases to generate a new receptor N-terminus that acts as an intramolecular ligand by folding back onto itself and triggering receptor activation. Short synthetic peptides corresponding to this newly exposed N-terminal tethered ligand can activate three of the four known PARs in the absence of proteases. and such PAR activating peptides (PAR-APs) have served as templates for agonist/antagonist development. In fact much of the evidence for involvement of PARs in diseases has relied upon use of PAR-APs. often of low potency and uncertain selectivity. This review summarizes current structures of PAR agonists and antagonists, the need for more selective and more potent PAR ligands that activate or antagonize this intriguing class of receptors, and outlines the background relevant to PAR activation, assay methods, and physiological properties anticipated for PAR ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Textilinin-1 (Txln-1), a Kunitz-type serine protease inhibitor, is a 59-amino-acid polypeptide isolated from the venom of the Australian Common Brown snake Pseudonaja textilis textilis. This molecule has been suggested as an alternative to aprotinin, also a Kunitz-type serine protease inhibitor, for use as an anti-bleeding agent in surgical procedures. Txln-1 shares only 47% amino-acid identity to aprotinin; however, six cysteine residues in the two peptides are in conserved locations. It is therefore expected that the overall fold of these molecules is similar but that they have contrasting surface features. Here, the crystallization of recombinant textilinin-1 (rTxln-1) as the free molecule and in complex with bovine trypsin (229 amino acids) is reported. Two organic solvents, phenol and 1,4-butanediol, were used as additives to facilitate the crystallization of free rTxln-1. Crystals of the rTxln-1-bovine trypsin complex diffracted to 2.0 angstrom resolution, while crystals of free rTxln-1 diffracted to 1.63 angstrom resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cone snail venom is a rich source of bioactives, in particular small disulfide rich peptides that disrupt synaptic transmission. Here, we report the discovery of conomap-Vt (Conp-Vt), an unusual linear tetradecapeptide isolated from Conus vitulinus venom. The sequence displays no homology to known conopeptides, but displays significant homology to peptides of the MATP (myoactive tetradecapeptide) family, which are important endogenous neuromodulators in molluscs, annelids and insects. Conp-Vt showed potent excitatory activity in several snail isolated tissue preparations. Similar to ACh, repeated doses of Conp-Vt were tachyphylactic. Since nicotinic and muscarinic antagonists failed to block its effect and Conp-Vt desensitised tissue remained responsive to ACh, it appears that Conp-Vt contractions were non-cholinergic in origin. Finally, biochemical studies revealed that Conp-Vt is the first member of the MATP family with a D-amino acid. Interestingly, the isomerization of L-Phe to D-Phe enhanced biological activity, suggesting that this post-translational modified conopeptide may have evolved for prey capture. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.