938 resultados para SINGLE NUCLEOTIDE POLYMORPHISMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous avons investigué la relation entre les polymorphismes de nucléotides simples (SNPs) chez trois gènes/loci candidats : DARC, CXCL2 et le loci ORMDL3-GSDMA-CSF3 situés sur le chromosome 17q21 et les complications neutropéniques et infectieuses qui en résultent durant la chimiothérapie chez les patients atteints de la leucémie lymphoblastique aigue. Ces loci codent pour certaines composantes du système immunitaire altérant la concentration de chémokines et leur distribution (DARC), stimulant le relâchement et la migration des neutophiles de la moelle épinière (CXCL2) et régulant la prolifération et la survie des granulocytes (G-CSF). Il est possible que des polymorphismes dans ces loci lorsqu’associés à de la chimiothérapie puissent mettre des individus suceptibles à un risque plus élevé de complication reliées à la chimiothérapie. Une sélection des marqueurs SNPs dans ces gènes ont été génotypés chez des enfants traités au CHU Ste-Justine pour une ALL entre 1989 et 2005. Après correction pour tests multiples, un polymorphisme DARC rs3027012 situé dans le 5’UTR a été associé à un compte phagocytaire peu élevé (APC<500 et <1000 cellules/µL, p=0.001 and p=0.0005, respectivement) ainsi qu’une hospitalisation due à une neutropénie (p=0.007) ou due à une infection et/ou neutropénie (p=0.007). Un effet protecteur a été identifié pour la mutation non sense Gly42Asp variant rs12075 (p=0.006). Des polymorphismes sur le chromosome 17q2 étaient associés à une hospitalisation due à une infection (rs3859192, p= 0.004) et à une neutropénie (rs17609240, p=0.006) L’infection était aussi modulée par CXCL2 (rs16850408, p=0.008) Cette étude identifie pour la première fois que les loci modulant le décompte des leucocytes et des neutrophiles pourraient jouer un rôle dans de déclenchement de complications dues à la chimiothérapie et pourraient ainsi servir de marqueurs pour un ajustement et un suivi du traitement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous avons investigué la relation entre les polymorphismes de nucléotides simples (SNPs) chez trois gènes/loci candidats : DARC, CXCL2 et le loci ORMDL3-GSDMA-CSF3 situés sur le chromosome 17q21 et les complications neutropéniques et infectieuses qui en résultent durant la chimiothérapie chez les patients atteints de la leucémie lymphoblastique aigue. Ces loci codent pour certaines composantes du système immunitaire altérant la concentration de chémokines et leur distribution (DARC), stimulant le relâchement et la migration des neutophiles de la moelle épinière (CXCL2) et régulant la prolifération et la survie des granulocytes (G-CSF). Il est possible que des polymorphismes dans ces loci lorsqu’associés à de la chimiothérapie puissent mettre des individus suceptibles à un risque plus élevé de complication reliées à la chimiothérapie. Une sélection des marqueurs SNPs dans ces gènes ont été génotypés chez des enfants traités au CHU Ste-Justine pour une ALL entre 1989 et 2005. Après correction pour tests multiples, un polymorphisme DARC rs3027012 situé dans le 5’UTR a été associé à un compte phagocytaire peu élevé (APC<500 et <1000 cellules/µL, p=0.001 and p=0.0005, respectivement) ainsi qu’une hospitalisation due à une neutropénie (p=0.007) ou due à une infection et/ou neutropénie (p=0.007). Un effet protecteur a été identifié pour la mutation non sense Gly42Asp variant rs12075 (p=0.006). Des polymorphismes sur le chromosome 17q2 étaient associés à une hospitalisation due à une infection (rs3859192, p= 0.004) et à une neutropénie (rs17609240, p=0.006) L’infection était aussi modulée par CXCL2 (rs16850408, p=0.008) Cette étude identifie pour la première fois que les loci modulant le décompte des leucocytes et des neutrophiles pourraient jouer un rôle dans de déclenchement de complications dues à la chimiothérapie et pourraient ainsi servir de marqueurs pour un ajustement et un suivi du traitement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water buffaloes (Bubalus bubalis) are quite well adapted to climatic conditions in the Amazon, and in this biome, they are noted for the considerable amount of meat and milk they produce and how hard they are able to work. Because of a lack of research dedicated to improving the rearing of buffaloes in the Amazon, the objective of this study was to genetically characterize the Murrah and Mediterranean breeds, as well as a mixed-breed population, based on polymorphisms in the diacylglycerol O-acyltransferase 1 gene (DGAT1), and associate the genotypes with milk production. By using the polymerase chain reaction-single-strand conformation polymorphism technique, the alleles A (0.79), B (0.20), and D (0.01) were found in the Murrah breed. In the Mediterranean and mixed-breed buffaloes, we found alleles A (0.69) and (0.77) and B (0.31) and (0.23), respectively. The Murrah breed had the genotypes AA (0.63), AB (0.29), BB (0.05), and AD (0.03), and the Mediterranean and mixed-breed buffaloes had the genotypes AA (0.44) and (0.61), AB (0.50) and (0.31), and BB (0.06) and (0.08), respectively. For the Murrah, Mediterranean, and mixedbreed buffaloes, respectively, the expected heterozygosity values were 0.34, 0.43, and 0.35, the inbreeding coefficients were 0.78, -0.15, and 0.17, and the Hardy-Weinberg probabilities were 0.70, 0.67, and 0.52. The genotypes evaluated did not have an effect on milk production; however, the single nucleotide polymorphisms can be used in studies on genetic variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) are unique genetic differences between individuals that contribute in significant ways to the determination of human variation including physical characteristics like height and appearance as well as less obvious traits such as personality, behaviour and disease susceptibility. SNPs can also significantly influence responses to pharmacotherapy and whether drugs will produce adverse reactions. The development of new drugs can be made far cheaper and more rapid by selecting participants in drug trials based on their genetically determined response to drugs. Technology that can rapidly and inexpensively genotype thousands of samples for thousands of SNPs at a time is therefore in high demand. With the completion of the human genome project, about 12 million true SNPs have been identified to date. However, most have not yet been associated with disease susceptibility or drug response. Testing for the appropriate drug response SNPs in a patient requiring treatment would enable individualised therapy with the right drug and dose administered correctly the first time. Many pharmaceutical companies are also interested in identifying SNPs associated with polygenic traits so novel therapeutic targets can be discovered. This review focuses on technologies that can be used for genotyping known SNPs as well as for the discovery of novel SNPs associated with drug response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine if participants with normal visual acuity, no ophthalmoscopically signs of age-related maculopathy (ARM) in both eyes and who are carriers of the CFH, LOC387715 and HRTA1 high-risk genotypes (“gene-positive”) have impaired rod- and cone-mediated mesopic visual function compared to persons who do not carry the risk genotypes (“gene-negative”).---------- METHODS: Fifty-three Caucasian study participants (mean 55.8 ± 6.1) were genotyped for CFH, LOC387715/ARMS2 and HRTA1 polymorphisms. We genotyped single nucleotide polymorphisms (SNPs) in the CFH (rs380390), LOC387715/ARMS2 (rs10490924) and HTRA1 (rs11200638) genes using Applied Biosystems optimised TaqMan assays. We determined the critical fusion frequency (CFF) mediated by cones alone (Long, Middle and Short wavelength sensitive cones; LMS) and by the combined activities of cones and rods (LMSR). The stimuli were generated using a 4-primary photostimulator that provides independent control of the photoreceptor excitation under mesopic light levels. Visual function was further assessed using standard clinical tests, flicker perimetry and microperimetry.---------- RESULTS: The mesopic CFF mediated by rods and cones (LMSR) was significantly reduced in gene-positive compared to gene-negative participants after correction for age (p=0.03). Cone-mediated CFF (LMS) was not significantly different between gene-positive and -negative participants. There were no significant associations between flicker perimetry and microperimetry and genotype.---------- CONCLUSIONS: This is the first study to relate ARM risk genotypes with mesopic visual function in clinically normal persons. These preliminary results could become of clinical importance as mesopic vision may be used to document sub-clinical retinal changes in persons with risk genotypes and to determine whether those persons progress into manifest disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catechol-O-methyl transferase (COMT) encodes an enzyme involved in the metabolism of dopamine and maps to a commonly deleted region that increases schizophrenia risk. A non-synonymous polymorphism (rs4680) in COMT has been previously found to be associated with schizophrenia and results in altered activity levels of COMT. Using a haplotype block-based gene-tagging approach we conducted an association study of seven COMT single nucleotide polymorphisms (SNPs) in 160 patients with a DSM-IV diagnosis of schizophrenia and 250 controls in an Australian population. Two polymorphisms including rs4680 and rs165774 were found to be significantly associated with schizophrenia. The rs4680 results in a Val/Met substitution but the strongest association was shown by the novel SNP, rs165774, which may still be functional even though it is located in intron five. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. This association was slightly improved when males were analysed separately possibly indicating a degree of sexual dimorphism. Our results confirm that COMT is a good candidate for schizophrenia risk, by replicating the association with rs4680 and identifying a novel SNP association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emergence and dissemination of community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains are being reported with increasing frequency in Australia and worldwide. These strains of CA-MRSA are genetically diverse and distinct in Australia. Genotyping of CA-MRSA using eight highly-discriminatory single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring the dissemination of these strains in the community. In this study, a SNP genotyping method was used to investigate the molecular epidemiology of 249 community acquired non-multiresistant MRSA (nm-MRSA) isolates over a 12-month period from routine diagnostic specimens. A real-time PCR for the presence of Panton-Valentine leukocidin (PVL) was also performed on these isolates. The CA-MRSA isolates were sourced from a large private laboratory in Brisbane, Australia that serves a wide geographic region encompassing Queensland and Northern New South Wales. This study identified 16 different STs and 98% of the CA-MRSA isolates were positive for the PVL gene. The most common ST was ST93 with 41% of isolates testing positive for this clone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Endometriosis is a polygenic disease with a complex and multifactorial aetiology that affects 8-10% of women of reproductive age. Epidemiological data support a link between endometriosis and cancers of the reproductive tract. Fibroblast growth factor receptor 2 (FGFR2) has recently been implicated in both endometrial and breast cancer. Our previous studies on endometriosis identified significant linkage to a novel susceptibility locus on chromosome 10q26 and the FGFR2 gene maps within this linkage region. We therefore hypothesized that variation in FGFR2 may contribute to the risk of endometriosis. METHODS We genotyped 13 single nucleotide polymorphisms (SNPs) densely covering a 27 kb region within intron 2 of FGFR2 including two SNPs (rs2981582 and rs1219648) significantly associated with breast cancer and a total 40 tagSNPs across 150 kb of the FGFR2 gene. SNPs were genotyped in 958 endometriosis cases and 959 unrelated controls. RESULTS We found no evidence for association between endometriosis and FGFR2 intron 2 SNPs or SNP haplotypes and no evidence for association between endometriosis and variation across the FGFR2 gene. CONCLUSIONS Common variation in the breast-cancer implicated intron 2 and other highly plausible causative candidate regions of FGFR2 do not appear to be a major contributor to endometriosis susceptibility in our large Australian sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As family history has been established as a risk factor for prostate cancer, attempts have been made to isolate predisposing genetic variants that are related to hereditary prostate cancer. With many genetic variants still to be identified and investigated, it is not yet possible to fully understand the impact of genetic variants on prostate cancer development. The high survival rates among men with prostate cancer have meant that other issues, such as quality of life (QoL), have also become important. Through their effect on a person’s health, a range of inherited genetic variants may potentially influence QoL in men with prostate cancer, even prior to treatment. Until now, limited research has been conducted on the relationship between genetics and QoL. Thus, this study contributes to an emerging field by aiming to identify certain genetic variants related to the QoL found in men with prostate cancer. It is hoped that this study may lead to future research that will identify men who have an increased risk of a poor QoL following prostate cancer treatment, which will aid in developing treatments that are individually tailored to support them. Previous studies have established that genetic variants of Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor 1 (IGF-1) may play a role in prostate cancer development. VEGF and IGF-1 have also been reported to be associated with QoL in people with ovarian cancer and colorectal cancer, respectively. This study completed a series of secondary analyses using two major data-sets (from 850 men newly diagnosed with prostate cancer, and approximately 550 men from the general Queensland population), in which genetic variants of VEGF and IGF-1 were investigated for associations with prostate cancer susceptibility and QoL. The first aim of this research was to investigate genetic variants in the VEGF and IGF-I gene for an association with the risk of prostate cancer. It was found that one IGF-1 genetic variant (rs35765) had a statistically significant association with prostate cancer (p = 0.04), and one VEGF genetic variant (rs2146323) had a statistically significant association with advanced prostate cancer (p = 0.02). The estimates suggest that carriers of the CA and AA genotype for rs35765 may have a reduced risk of developing prostate cancer (Odds Ratio (OR) = 0.72, 95% Confidence Interval (CI) = 0.55, 0.95, OR = 0.60, 95% CI = 0.26, 1.39, respectively). Meanwhile, carriers of the CA and AA genotype for rs2146323 may be at increased risk of advanced prostate cancer, which was determined by a Gleason score of above 7 (OR = 1.72, 95% CI = 1.12, 2.63, OR = 1.90, 95% CI = 1.08, 3.34, respectively). Utilising the widely used short-form health survey, the SF-36v2, the second aim of this study was to investigate the relationship between prostate cancer and QoL prior to treatment. Assessing QoL at this time-point was important as little research has been conducted to evaluate if prostate cancer affects QoL regardless of treatment. The analyses found that mean SF-36v2 scale scores related to physical health were higher by at least 0.3 Standard Deviations (SD) among men with prostate cancer than the general population comparison group. This difference was considered clinically significant (defined by group differences in mean SF-36v2 scores by at least 0.3 SD). These differences were also statistically significant (p<0.05). Mean QoL scale scores related to mental health were similar between men with prostate cancer and those from the general population comparison group. The third aim of this study was to investigate genetic variants in the VEGF and IGF-1 gene for an association with QoL in prostate cancer patients prior to their treatment. It was essential to evaluate these relationships prior to treatment, before the involvement of these genes was potentially interrupted by treatment. The analyses found that some genetic variants had a small clinically significant association (0.3 SD) to some QoL domains experienced by these men. However, most relationships were not statistically significant (p>0.05). Most of the associations found identified that a small sub-group of men with prostate cancer (approximately 2%) reported, on average, a slightly better QoL than the majority of the prostate cancer patients. The fourth aim of this research was to investigate whether associations between genetic variants in VEGF and IGF-1 and QoL were specific to men with prostate cancer, or were also applicable to the general male population. It was found that twenty out of one-hundred relationships between the genetic variants of VEGF and IGF-1 and QoL health-measures and scales examined differed between these groups. In the majority of the relationships involving VEGF SNPs that differed, a clinically significant difference (0.3 or more SD) between mean scores among the genotype groups in prostate cancer patients was found, while mean scores among men from the general-population comparison group were similar. For example, prostate cancer participants who carried at least one T allele (CT or TT genotype) for rs3024994 had a clinically significant higher (0.3 SD) mean QoL score in terms of the role-physical scale, than participants who carried the CC genotype. This was not seen among men from the general population sample, as the mean score was similar between genotype groups. The opposite was seen in regards to the IGF-1 SNPs examined. Overall, these relationships were not considered to directly impact on the clinical options for men with prostate cancer. As this study utilised secondary data from two separate studies, there are a number of important limitations that should be acknowledged including issues of multiple comparisons, power, and missing or unavailable data. It is recommended that this study be replicated as a better-designed study that takes greater consideration of the many factors involved in prostate cancer and QoL. Investigation into other genetic variants of VEGF or IGF-1 is also warranted, as is consideration of other genes and their relationship with QoL. Through identifying certain genetic variants that have a modest association to prostate cancer, this project adds to the knowledge surrounding VEGF and IGF-1 and their role in prostate cancer susceptibility. Importantly, this project has also introduced the potential role genetics plays in QoL, through investigating the relationships between genetic variants of VEGF and IGF-1 and QoL.