974 resultados para SCHRODINGER PERTURBATION-THEORY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent progress in the solution of Schwinger-Dyson equations, as well as lattice simulation of pure glue QCD, indicate that the gluon propagator and coupling constant are infrared finite. Such non-perturbative information can be introduced in the QCD perturbative expansion in the scheme named Dynamical Perturbation Theory. We exemplify this procedure with the calculation of some two-body non-leptonic annihilation B meson decays, which show agreement with the experimental data in the case of a gluon propagator characterized by a dynamical gluon mass of 500MeV, compatible with the value found in several processes computed with this method. We give a. preliminary account of the application of this procedure at the loop level in the case of the Bjorken sum rule.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper energy transfer in a dissipative mechanical system is analysed. Such system is composed of a linear and a nonlinear oscillator with a nonlinearizable cubic stiffness. Depending on initial conditions, we find energy transfer either from linear to nonlinear oscillator (energy pumping) or from nonlinear to linear. Such results are valid for two different potentials. However, under resonance and absence of external excitation, if the mass of the nonlinear oscillator is adequately small then the linear oscillator always loses energy. Our approach uses rigorous Regular Perturbation Theory. Besides, we have included the case of two linear oscillators under linear or cubic interactions. Comparisons with the earlier case are made. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are a plethora of dark energy parametrizations that can fit current supernovae Ia data. However, these data are only sensitive to redshifts up to order one. In fact, many of these parametrizations break down at higher redshifts. In this paper we study the effect of dark energy models on the formation of dark halos. We select a couple of dark energy parametrizations which are sensible at high redshifts and compute their effect on the evolution of density perturbations in the linear and non-linear regimes. Using the Press-Schechter formalism we show that they produce distinguishable signatures in the number counts of dark halos. Therefore, future observations of galaxy clusters can provide complementary constraints on the behaviour of dark energy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.