998 resultados para Rice trade
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.
Resumo:
The coherence of the Soviet bloc was seriously tested at the turn of the 1970s, as the Soviet Union and its allies engaged in intensive negotiations over their relations with the European Communities (EC). In an effort to secure their own national economic interests many East European countries began independent manoeuvres against the wishes of their bloc leader. However, much of the intra-bloc controversy was kept out of the public eye, as the battle largely took place behind the scenes, within the organisation for economic cooperation, the Council for Mutual Economic Assistance (CMEA). The CMEA policy-making process vis-à-vis the EC is described in this study with reference to primary archival materials. This study investigates the negotiating positions and powers of the CMEA member states in their efforts to deal with the economic challenge created by the progress of the EC, as it advanced towards the customs union. This entails an analysis of the functioning principles and performance of the CMEA machinery. The study traces the CMEA negotiations that began in 1970 over its policy toward the EC. The policy was finally adopted in 1974, and was followed by the first official meeting between the two organisations in early 1975. The story ends in 1976, when the CMEA s efforts to enter into working relations with the EC were seemingly frustrated by the latter. The first major finding of the study is that, contrary to much of the prior research, the Soviet Union was not in a hegemonic position vis-à-vis its allies. It had to use a lot of its resources to tame the independent manoeuvring of its smaller allies. Thus, the USSR was not the kind of bloc leader that the totalitarian literature has described. Because the Soviet Union had to spend so much attention on its own bloc-politics, it was not able to concentrate on formulating a policy vis-à-vis the EC. Thus, the Soviet leadership was dependent on its allies in those instances when the socialist countries needed to act as a bloc. This consequently opened up the possibility for the USSR s allies to manoeuvre. This study also argues that when the CMEA did manage to find a united position, it was a force that the EC had to reckon with in its policy-making. This was particularly the case in the implementation of the EC Common Commercial Policy. The other main finding of the study is that, although it has been largely neglected in the previous literature on the history of West European integration, the CMEA did in fact have an effect on EC decision-making. This study shows how for political and ideological reasons the CMEA members did not acknowledge the EC s supranational authority. Therefore the EC had no choice but to refrain from implementing its Common Commercial Policy in full.
Resumo:
The paper correlates the reactivity of rice husk ash with its physicochemical properties such as crystallinity, surface area, microstructure, particle size distribution, porosity and solubility. These properties, in tum, are dependent on the time-temperature conditions under which the ash is prepared. It is found that the reactivity of the ash cannot be quantified by any one of these parameters alone, though they all indicate it qualitatively. Therefore, a method for quantifying this property was developed, by which the Reactivity Index is obtained. There is only a gradual change in the reactivity index of RHA with ashing temperature, as in many other properties, like surface area, porosity and total volume of gas absorbed by unit mass of the silica ash. This reactive index is found to be useful in determining the optimum ash/lime ratios required to give the best performance for RHA-lime composites.
Resumo:
The use of silica from rice-husk for the production of various materials, including rice-husk ash-lime binder, has gained significance. In this context, the decomposition of husk, the properties of the silica ash, including its crystallization and the ash-lime reaction, are reviewed. The mechanism of ash-lime reaction is controlled mostly by the development of osmotic pressure. For lime-deficient ash-lime mixtures the reaction is complete in the initial few days and therefore no strength development is observed for such mortars in the later ages. The use of optimum ash/lime ratio is recommended for obtaining consistently good performance for the mortar. A method for the determination of this ratio is also discussed.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Resumo:
We describe a System-C based framework we are developing, to explore the impact of various architectural and microarchitectural level parameters of the on-chip interconnection network elements on its power and performance. The framework enables one to choose from a variety of architectural options like topology, routing policy, etc., as well as allows experimentation with various microarchitectural options for the individual links like length, wire width, pitch, pipelining, supply voltage and frequency. The framework also supports a flexible traffic generation and communication model. We provide preliminary results of using this framework to study the power, latency and throughput of a 4x4 multi-core processing array using mesh, torus and folded torus, for two different communication patterns of dense and sparse linear algebra. The traffic consists of both Request-Response messages (mimicing cache accesses)and One-Way messages. We find that the average latency can be reduced by increasing the pipeline depth, as it enables higher link frequencies. We also find that there exists an optimum degree of pipelining which minimizes energy-delay product.
Resumo:
GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.