942 resultados para Rice Genome
Resumo:
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
Resumo:
Pendant ma thèse de doctorat, j'ai utilisé des espèces modèles, comme la souris et le poisson-zèbre, pour étudier les facteurs qui affectent l'évolution des gènes et leur expression. Plus précisément, j'ai montré que l'anatomie et le développement sont des facteurs clés à prendre en compte, car ils influencent la vitesse d'évolution de la séquence des gènes, l'impact sur eux de mutations (i.e. la délétion du gène est-elle létale ?), et leur tendance à se dupliquer. Où et quand il est exprimé impose à un gène certaines contraintes ou au contraire lui donne des opportunités d'évoluer. J'ai pu comparer ces tendances aux modèles classiques d'évolution de la morphologie, que l'on pensait auparavant refléter directement les contraintes s'appliquant sur le génome. Nous avons montré que les contraintes entre ces deux niveaux d'organisation ne peuvent pas être transférées simplement : il n'y a pas de lien direct entre la conservation du génotype et celle de phénotypes comme la morphologie. Ce travail a été possible grâce au développement d'outils bioinformatiques. Notamment, j'ai travaillé sur le développement de la base de données Bgee, qui a pour but de comparer l'expression des gènes entre différentes espèces de manière automatique et à large échelle. Cela implique une formalisation de l'anatomie, du développement et de concepts liés à l'homologie grâce à l'utilisation d'ontologies. Une intégration cohérente de données d'expression hétérogènes (puces à ADN, marqueurs de séquence exprimée, hybridations in situ) a aussi été nécessaire. Cette base de données est mise à jour régulièrement et disponible librement. Elle devrait contribuer à étendre les possibilités de comparaison de l'expression des gènes entre espèces pour des études d'évo-devo (évolution du développement) et de génomique. During my PhD, I used model species of vertebrates, such as mouse and zebrafish, to study factors affecting the evolution of genes and their expression. More precisely I have shown that anatomy and development are key factors to take into account, influencing the rate of gene sequence evolution, the impact of mutations (i.e. is the deletion of a gene lethal?), and the propensity of a gene to duplicate. Where and when genes are expressed imposes constraints, or on the contrary leaves them some opportunity to evolve. We analyzed these patterns in relation to classical models of morphological evolution in vertebrates, which were previously thought to directly reflect constraints on the genomes. We showed that the patterns of evolution at these two levels of organization do not translate smoothly: there is no direct link between the conservation of genotype and phenotypes such as morphology. This work was made possible by the development of bioinformatics tools. Notably, I worked on the development of the database Bgee, which aims at comparing gene expression between different species in an automated and large-scale way. This involves the formalization of anatomy, development, and concepts related to homology, through the use of ontologies. A coherent integration of heterogeneous expression data (microarray, expressed sequence tags, in situ hybridizations) is also required. This database is regularly updated and freely available. It should contribute to extend the possibilities for comparison of gene expression between species in evo-devo and genomics studies.
Resumo:
The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.
Resumo:
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Resumo:
Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.
Resumo:
Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.
Resumo:
Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
Resumo:
In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear-cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call-influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid-origin polyploids.
Resumo:
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.
Resumo:
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Resumo:
BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.
Resumo:
cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.
Resumo:
In recent years, analysis of the genomes of many organisms has received increasing international attention. The bulk of the effort to date has centred on the Human Genome Project and analysis of model organisms such as yeast, Drosophila and Caenorhabditis elegans. More recently, the revolution in genome sequencing and gene identification has begun to impact on infectious disease organisms. Initially, much of the effort was concentrated on prokaryotes, but small eukaryotic genomes, including the protozoan parasites Plasmodium, Toxoplasma and trypanosomatids (Leishmania, Trypanosoma brucei and T. cruzi), as well as some multicellular organisms, such as Brugia and Schistosoma, are benefiting from the technological advances of the genome era. These advances promise a radical new approach to the development of novel diagnostic tools, chemotherapeutic targets and vaccines for infectious disease organisms, as well as to the more detailed analysis of cell biology and function.Several networks or consortia linking laboratories around the world have been established to support these parasite genome projects[1] (for more information, see http://www.ebi.ac.uk/ parasites/paratable.html). Five of these networks were supported by an initiative launched in 1994 by the Specific Programme for Research and Tropical Diseases (TDR) of the WHO[2, 3, 4, 5, 6]. The Leishmania Genome Network (LGN) is one of these[3]. Its activities are reported at http://www.ebi.ac.uk/parasites/leish.html, and its current aim is to map and sequence the genome of Leishmania by the year 2002. All the mapping, hybridization and sequence data are also publicly available from LeishDB, an AceDB-based genome database (http://www.ebi.ac.uk/parasites/LGN/leissssoft.html).