955 resultados para Reuse
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Abstract—It is easy to create new combinatorial games but more difficult to predict those that will interest human players. We examine the concept of game quality, its automated measurement through self-play simulations, and its use in the evolutionary search for new high-quality games. A general game system called Ludi is described and experiments conducted to test its ability to synthesize and evaluate new games. Results demonstrate the validity of the approach through the automated creation of novel, interesting, and publishable games. Index Terms—Aesthetics, artificial intelligence (AI), combinatorial game, evolutionary search, game design.
Resumo:
Since its launch in 2001, the Creative Commons open content licensing initiative has received both praise and censure. While some have touted it as a major step towards removing the burdens copyright law imposes on creativity and innovation in the digital age, others have argued that it robs artists of their rightful income. This paper aims to provide a brief overview and analysis of the practical application of the Creative Commons licences five years after their launch. It looks at how the Creative Commons licences are being used and who is using them, and attempts to identify likely motivations for doing so. By identifying trends in how this licence use has changed over time, it also attempts to rebut arguments that Creative Commons is a movement of academics and hobbyists, and has no value for traditional organisations or working artists.
Resumo:
The internet infrastructure which supports high data rates has a major impact on the Australian economy and the world. However, in rural Australia, the provision of broadband services to an internet dispersed population over a large geographical area with low population densities remains both an economic and technical challenge [1]. Furthermore, the implementation of currently available technologies such as fibre-to-the-premise (FTTP), 3G, 4G and WiMAX seems to be impractical, considering the low population density that is distributed in a large area. Therefore, new paradigms and innovative telecommunication technologies need to be explored to overcome the challenges of providing faster and more reliable broadband internet services to internet dispersed rural areas. The research project implements an innovative Multi-User- Single-Antenna for MIMO (MUSA-MIMO) technology using the spectrum currently allocated to analogue TV. MUSAMIMO technology can be considered as a special case of MIMO technology, which is beneficial when provisioning reliable and high-speed communication channels. Particularly, the abstract describes the development of a novel MUSA-MIMO channel model that takes into account temporal variations in the rural wireless environment. This can be considered as a novel approach tailor-made to rural Australia for provisioning efficient wireless broadband communications.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development, having a significant impact on global economy. Rural Australia’s inherent dispersed population over a large geographical area make the delivery of efficient, well-maintained and cost-effective internet a challenging task. The novel and highly-efficient Multi-User-Single-Antenna for MIMO (MUSA-MIMO) broadband wireless communication technology can effectively be used to deliver wireless broadband access to rural areas. This research aims to develop for the first time, an efficient and accurate algorithm for the tracking and prediction of Channel State Information (CSI) at the transmitter, by characterising time variation effects of the wireless communication channel on the performance of a highly-efficient MUSA-MIMO technology particularly suited for rural communities, improving their quality of life and economic prosperity.
Resumo:
Alzaid et al. proposed a forward & backward secure key management scheme in wireless sensor networks for Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems. The scheme, however, is still vulnerable to an attack called the sandwich attack that can be launched when the adversary captures two sensor nodes at times t1 and t2, and then reveals all the group keys used between times t1 and t2. In this paper, a fix to the scheme is proposed in order to limit the vulnerable time duration to an arbitrarily chosen time span while keeping the forward and backward secrecy of the scheme untouched. Then, the performance analysis for our proposal, Alzaid et al.’s scheme, and Nilsson et al.’s scheme is given.
Resumo:
Vehicular ad hoc network (VANET) is a wireless ad hoc network that operates in a vehicular environment to provide communication between vehicles. VANET can be used by a diverse range of applications to improve road safety. Cooperative collision warning system (CCWS) is one of the safety applications that can provide situational awareness and warning to drivers by exchanging safety messages between cooperative vehicles. Currently, the routing strategies for safety message dissemination in CCWS are scoped broadcast. However, the broadcast schemes are not efficient as a warning message is sent to a large number of vehicles in the area, rather than only the endangered vehicles. They also cannot prioritize the receivers based on their critical time to avoid collision. This paper presents a more efficient multicast routing scheme that can reduce unnecessary transmissions and also use adaptive transmission range. The multicast scheme involves methods to identify an abnormal vehicle, the vehicles that may be endangered by the abnormal vehicle, and the latest time for each endangered vehicle to receive the warning message in order to avoid the danger. We transform this multicast routing problem into a delay-constrained minimum Steiner tree problem. Therefore, we can use existing algorithms to solve the problem. The advantages of our multicast routing scheme are mainly its potential to support various road traffic scenarios, to optimize the wireless channel utilization, and to prioritize the receivers.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.
Resumo:
Diffraction tomographic imaging is applied to the imaging of shallowly buried targets with multi-bistatic arrays of transmitters and receivers.
Resumo:
A parametric study was carried out to investigate the effects on reconstructed images from a ground penetrating radar (GPR) due to (a) the centre frequency of the GPR excitation pulse, (b) the height of transmitting and receiving antennas above ground level, and (c) the proximity of the buried objects. An integrated software package was developed to streamline the computer simulation based on synthetic data generated by GPRMax.
Resumo:
The traditional model for information dissemination in disaster response is unidirectional from official channels to the public. However recent crises in the US, such as Hurricane Katrina and the Californian Bushfires show that civilians are now turning to Web 2.0 technologies as a means of sharing disaster related information. These technologies present enormous potential benefits to disaster response authorities that cannot be overlooked. In Australia, the Victorian Bushfires Royal Commission has recently recommended that Australian disaster response authorities utilize information technologies to improve the dissemination of disaster related, bushfire information. However, whilst the use of these technologies has many positive attributes, potential legal liabilities for disaster response authorities arise. This paper identifies some potential legal liabilities arising from the use of Web 2.0 technologies in disaster response situations thereby enhancing crisis related information sharing by highlighting legal concerns that need to be addressed.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE.
Resumo:
While sensor networks have now become very popular on land, the underwater environment still poses some difficult problems. Communication is one of the difficult challenges under water. There are two options: optical and acoustic. We have designed an optical communication board that allows the Fleck’s to communicate optically. We have tested the resulting underwater sensor nodes in two different applications.