913 resultados para Redwood National Park (Calif.)--Maps.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.
Resumo:
Protected area downgrading, downsizing, and degazettement (PADDD) has been documented worldwide, but its impacts on biodiversity are poorly understood. To fill this knowledge gap, we reviewed historical documents to identify legal changes that altered the boundaries of Yosemite National Park. We identified two downsizes and five additions between 1905 and 1937 that reduced the size of Yosemite National Park by 30%. To examine the effects of these downsizing events on habitat fragmentation by roads, we compared protected, never-protected, and downsized lands at three spatial scales using four habitat fragmentation metrics: road density, fragment (land surrounded by roads) area-to-perimeter ratio, fragment area, and fragment density. In general, lands that were removed from protection, e.g., downsized, were more highly fragmented than protected lands and indistinguishable from never-protected lands. Lands where downsizes were reversed were less fragmented than lands where downsizes were not reversed. These results suggest that protected area downsizing may exacerbate habitat fragmentation, a key contributor to biodiversity loss globally. Furthermore, the case study in Yosemite National Park demonstrates that iconic protected areas in developed countries are not immune to downsizing. These findings underscore the need to account for PADDD and governance histories in ecological research, monitoring, and evaluation. As we move toward more evidence-based conservation policy, a rigorous understanding of PADDD is essential to ensure that protected areas fulfill their promise as a strategy for conserving global biodiversity.
Resumo:
ID: 8906; issued December 19, 2000
Resumo:
ID: 8987; Annual Project Report for 2003, Project No. DLIA 2003-14 issued August 17, 2004
Resumo:
The coastal districts, as an intersection of two perfectly different ecosystems of dry land and sea, is one of the most complicated and the richest natural system on earth. Considering these areas are constantly exposed to aggregation of water pollutants and also consequence resulting from construction and development activities, they are very vulnerable. Therefore, "sensitive Coastal areas" has become a common word in the related subjects to marine environment recently. The said title relates to the areas of the coastal lines which are vulnerable to the natural condition or human actions because of ecological, social, economic, educational and research importance, also they need particular supports. The southern coasts of Caspian Sea, In Iran prominent samples are of these sensitive areas which their environment are exposed to demolition and destruction intensely, due to increasing and uncontrolled development. The first stage of protecting and managing the coastal areas is identifying sensitive Coastal areas and broadening the Coasts. In this survey, we attempted to examine a definite area in the southern coasts of Caspian Sea. In Iran, by profiting from the world experiences and concluded researches in Iran especially the concluded studies by marine environment office and the Environment protection organization on the subject of determination criteria of the sensitive ecological districts. For this purpose (In Gilan Province) Boujagh national park district which is located in the mouth of sefidroud river and also is possessed of the special ecological and environmental features and distinctions. In this survey, first they said district is divided proportionally on the basis of using a grid system in order to identify the sensitive ecological districts and broaden the coast, and then the desired indices have been determined and scored by numeral valuation method in each unit and then analysis has been done by using of the geography information system (GIS) and final has estimated economic valuation of sensitive ecological areas that is presented in this essay.
Resumo:
Dissertação de Mestrado, Economia do Turismo e Desenvolvimento Regional, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
The purpose of this research was to investigate the effects of wetland restoration on the water balance, flushing time, and water chemistry of southern Taylor Slough, a major water way in Everglades National Park. Water balance and flushing time equations were calculated on a monthly time step from 2001 – 2011. Water chemistry of major ions and nutrients were analyzed and correlated with water flushing times. Results showed that evapotranspiration followed by water volume had the greatest influence on flushing time. The flushing times varied between 3 and 78 days, with longer times observed between October and December, and the shorter times between March and May. Ion concentrations at the coastal areas decreased with increased flushing times. Increased surface water inflow that resulted from restoration projects and water management changes were productive in the rainy season and should result in increased flushing times and decreased ion concentrations in Taylor Slough.
Resumo:
In this thesis the mostly unknown herpetofauna in Hin Nam No National Protected Area Laos in the northern Truong Son Range was for the first time intensively investigated, and its diversity was compared to the bordering, and well-investigated Phong Nha - Ke Bang National Park in Vietnam. Twelve new vertebrate species were described comprising 11 geckonids (Cyrtodactylus bansocensis, C. calamei, C. hinnamnoensis, C. jaegeri, C. rufford, C. sommerladi, C. soudthichaki, Gekko boehmei, G. bonkowskii, G. sengchanthavongi, G. thakhekensis, Lycodon banksi and one colubrid snake (Lycodon banksi). Seven species were discovered for the first time in Laos including three frogs (Gracixalus quyeti, G. supercornutus, Rhacophorus maximus), two geckos (Cyrtodactylus cryptus, C. pseudoquadrivirgatus) and two snakes (Lycodon futsingensis, L. ruhstrati abditus). The main hypothesis that the Truong Son Range acted as a biogeographic barrier for the distribution of amphibians and reptiles could be confirmed at least for karst adapted gekkonids. Compared to other herpetofaunal groups the number of gekkonids in karst formations was particularly high (seven bent-toed geckos, four true geckos). By comparing the relative amounts of shared species in Hin Nam No and Phong Nha - Ke Bang, it is interesting to note that fewer reptile species (38%) than amphibian species (66%) were shared between both regions. This might indicate that the Truong Son Range acts as a stronger biogeographical barrier for reptiles than for amphibians. Two pairs of karst-adapted cryptic gecko species (i.e. species with distinct genetic differences, but a similar phenotype) occurred on both sides of the Truong Son Range. Only in one case these were sibling species (Crytodactylus sommerladi in Laos versus C. roesleri in Vietnam), but not in the other (C. hinnamnoensis in Laos versus C. phongnhakebangensis in Vietnam). On the Laotian side, nine gecko species (Cyrtodactylus bansocensis, C. calamei, C. darevskii, C. hinnamnoensis, C. khammouanensis, C. multiporus, C. sommerladi, G. boehmei, G. sengchanthavongi) currently have to be regarded as endemic to the Hin Nam No region. On the Vietnamese side, seven species including two bent-toed geckos (Cyrtodactylus phongnhakebangensis and C. roesleri), three skinks (Lygosoma boehmei, Sphenomorphus tetradactylus and Tropidophorus noggei), and two snakes (Hebius andreae and Boiga bourreti) are currently only known from Phong Nha - Ke Bang and adjacent regions. These high numbers of potential endemic species together with the cryptic species complex in Cyrtodactylus provide strong evidence that the karst formations in the northern Truong Son Range represent a hot spot of reptile diversity and of speciation in Crytodactylus in particular. Correct species identification is a fundamental requirement for conservation measures. The discovery of cryptic species complexes poses a challenge for alpha taxonomy and species conservation, because the true distribution ranges of the species are in fact much smaller than previously assumed. Species conservation in this area of Laos is facing a number of further problems. New and potentially endemic species were discovered in highly populated and disturbed areas. Conversion of the Ho Chi Minh Trail into a highway provided easy access for farmers and still continues to accelerate the destruction of remote forest areas. Southern Hin Nam No with its high diversity of endemic species was identified as the first priority area for conservation. Also Ban Soc, an area isolated from Hin Nam No, should be among the conservation priorities because this region houses a so far overlooked population of the critically endangered Siamese crocodile. Efforts to establish a legal conservation status for this habitat are in progress.
Resumo:
Mode of access: Internet.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
Includes text and index.
Resumo:
In text: In 1986 the Statue will be 100 years old.
Resumo:
Panel title.