942 resultados para Real-Time Decision Support System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UILU-ENG 80 1742"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time software systems are rarely developed once and left to run. They are subject to changes of requirements as the applications they support expand, and they commonly outlive the platforms they were designed to run on. A successful real-time system is duplicated and adapted to a variety of applications - it becomes a product line. Current methods for real-time software development are commonly based on low-level programming languages and involve considerable duplication of effort when a similar system is to be developed or the hardware platform changes. To provide more dependable, flexible and maintainable real-time systems at a lower cost what is needed is a platform-independent approach to real-time systems development. The development process is composed of two phases: a platform-independent phase, that defines the desired system behaviour and develops a platform-independent design and implementation, and a platform-dependent phase that maps the implementation onto the target platform. The last phase should be highly automated. For critical systems, assessing dependability is crucial. The partitioning into platform dependent and independent phases has to support verification of system properties through both phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National meteorological offices are largely concerned with synoptic-scale forecasting where weather predictions are produced for a whole country for 24 hours ahead. In practice, many local organisations (such as emergency services, construction industries, forestry, farming, and sports) require only local short-term, bespoke, weather predictions and warnings. This thesis shows that the less-demanding requirements do not require exceptional computing power and can be met by a modern, desk-top system which monitors site-specific ground conditions (such as temperature, pressure, wind speed and direction, etc) augmented with above ground information from satellite images to produce `nowcasts'. The emphasis in this thesis has been towards the design of such a real-time system for nowcasting. Local site-specific conditions are monitored using a custom-built, stand alone, Motorola 6809 based sub-system. Above ground information is received from the METEOSAT 4 geo-stationary satellite using a sub-system based on a commercially available equipment. The information is ephemeral and must be captured in real-time. The real-time nowcasting system for localised weather handles the data as a transparent task using the limited capabilities of the PC system. Ground data produces a time series of measurements at a specific location which represents the past-to-present atmospheric conditions of the particular site from which much information can be extracted. The novel approach adopted in this thesis is one of constructing stochastic models based on the AutoRegressive Integrated Moving Average (ARIMA) technique. The satellite images contain features (such as cloud formations) which evolve dynamically and may be subject to movement, growth, distortion, bifurcation, superposition, or elimination between images. The process of extracting a weather feature, following its motion and predicting its future evolution involves algorithms for normalisation, partitioning, filtering, image enhancement, and correlation of multi-dimensional signals in different domains. To limit the processing requirements, the analysis in this thesis concentrates on an `area of interest'. By this rationale, only a small fraction of the total image needs to be processed, leading to a major saving in time. The thesis also proposes an extention to an existing manual cloud classification technique for its implementation in automatically classifying a cloud feature over the `area of interest' for nowcasting using the multi-dimensional signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT