971 resultados para Radiation Protection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of increased UV radiation on photosynthesis estimated as in vivo chlorophyll fluorescence i.e. optimal quantum yield (F(v)/F(m)) and electron transport rate (ETR) in the green filamentous alga Zygnemopsis decussata (Streptophyta, Zygnematales) growing in the high mountain lake ""La Caldera"" (Sierra Nevada, Spain) at 3050 m altitude was evaluated. Two sets of in situ experiments were conducted: (1) On July 2006, F(v)/F(m) was measured throughout the day at different depths (0.1, 0.25, 0.5 and 1 m) and in the afternoon. ETR and phenolic compounds were determined. In addition, in order to analyze the effect of UV radiation, F(v)/F(m) was determined in algae incubated for 3 days at 0.5m under three different light treatments: PAR+UVA+UVB (PAB). PAR+UVA (PA) and PAR (P). (2) On August 2007, F(v)/F(m) was determined under PAB, PA and P treatments and desiccation/rehydration conditions. F(v)/F(m) decreased in algae growing in surface waters (0.1 m) but also at 1 m depth compared to that at 0.5 in depth. The decrease of F(v)/F(m) at noon due to photoinhibition was small (less than 10%) except in algae growing at 1 m depth (44%). The maximal electron transport rate was 3.5-5 times higher in algae growing at 0.25-0.5 m respectively than that at 0.1 and 1 m depth. These results are related to the accumulation of phenolic compounds: i.e. the algae at 0.25-0.5 in presentedrespectively about a 3-5 times higher concentration of phenolic compounds than that of algae at 0.1-1 m depth. The protection mechanisms seem to be stimulated by UVB radiation, since F(v)/F(m) was higher in the presence of UVB (PAB treatment) compared to PA or P treatments. UVA exerts the main photoinhibitory effect, not Only at midday, but also in the afternoon. UVB radiation also had a protective effect in algae grown under desiccation conditions for three days. During re-hydration, the rapid increase of F(v)/F(m) (after 1 h) was higher in the UVB-grown algae than in algae grown under UVA radiation. After 5 h. F(v)/F(m) values were similar in algae submitted to desiccation/rehydration under PAB and P treatments as they were in the control (submerged algae). The combined effect of desiccation and UVA produced the greatest decrease of photosynthesis in Z. decussata. Thifs UVB, in contrast to other species, may support the recovery process. Z. decussata can acclimate to severe stress, conditions in this high mountain lake by the photoprotection mechanism induced by UVB radiation through dynamic photoinhibition and the accumulation of phenolic compounds (UV screen and antioxidant substances).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was developed to evaluate the fungal burden, toxigenic molds, and mycotoxin contamination and to verify the effects of gamma radiation in four kinds of medicinal plants stored before and after 30 days of irradiation treatment. Eighty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia. and Cassia angustifolia) purchased from drugstores, wholesale, and open-air markets in Sao Paulo city, Brazil, were analyzed. The samples were treated using a (60)Co gamma ray source (Gammacell) with doses of 5 and 10 kGy. Nonirradiated samples were used as controls of fungal isolates. For enumeration of fungi on medicinal plants, serial dilutions of the samples were plated in duplicate onto dichloran 18% glycerol agar. The control samples revealed a high burden of molds, including toxigenic fungi. The process of gamma radiation was effective in reducing the number of CFU per gram in all irradiated samples of medicinal plants after 30 days of storage, using a dose of 10 kGy and maintaining samples in a protective package. No aflatoxins were detected. Gamma radiation treatment can be used as an effective method for preventing fungal deterioration of medicinal plants subject to long-term storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Textile Technology: The sun-blocking properties of a textile are enhanced when a dye, pigment, delustrant, or ultraviolet absorber finish is present that absorbs ultraviolet radiation and blocks its transmission through a fabric to the skin. For this reason, dyed fabrics provide better sun protection than bleached fabrics. Since naturally-colored cottons contain pigments that produce shades ranging from light green to tan and brown, it seemed reasonable to postulate that they would provide better sun protection than conventional bleached cotton, and that natural pigments might prove more durable to laundering and light exposure than dyes, but there is no published research on the ultraviolet transmission values for naturally-pigmented cottons. The purpose of this study was to determine the ultraviolet protection (UPF) values of naturally-pigmented cotton in three shades (green, tan, and brown), and the effect of light exposure and laundering on the sun-blocking properties of naturally-pigmented cotton. Naturally-pigmented cotton specimens were exposed to xenon light and accelerated laundering, ultraviolet transmission values measured, and UPF values calculated following light exposure and laundering. The naturally-pigmented cottons exhibited significantly higher UPF values than conventional cotton (bleached or unbleached). Although xenon light exposure and laundering caused some fading, the UPF values of naturally-pigmented cotton continue to be sufficiently high so that all three shades continue to provide good sun protection after the equivalent of 5 home launderings and 80 American Association of Textile Chemists and Colorists fading units (AFUs) of xenon light exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: The aim of this study was to measure the radiation dose of dual-energy and single-energy multidetector computed tomographic (CT) imaging using adult liver, renal, and aortic imaging protocols. MATERIALS AND METHODS: Dual-energy CT (DECT) imaging was performed on a conventional 64-detector CT scanner using a software upgrade (Volume Dual Energy) at tube voltages of 140 and 80 kVp (with tube currents of 385 and 675 mA, respectively), with a 0.8-second gantry revolution time in axial mode. Parameters for single-energy CT (SECT) imaging were a tube voltage of 140 kVp, a tube current of 385 mA, a 0.5-second gantry revolution time, helical mode, and pitch of 1.375:1. The volume CT dose index (CTDI(vol)) value displayed on the console for each scan was recorded. Organ doses were measured using metal oxide semiconductor field-effect transistor technology. Effective dose was calculated as the sum of 20 organ doses multiplied by a weighting factor found in International Commission on Radiological Protection Publication 60. Radiation dose saving with virtual noncontrast imaging reconstruction was also determined. RESULTS: The CTDI(vol) values were 49.4 mGy for DECT imaging and 16.2 mGy for SECT imaging. Effective dose ranged from 22.5 to 36.4 mSv for DECT imaging and from 9.4 to 13.8 mSv for SECT imaging. Virtual noncontrast imaging reconstruction reduced the total effective dose of multiphase DECT imaging by 19% to 28%. CONCLUSION: Using the current Volume Dual Energy software, radiation doses with DECT imaging were higher than those with SECT imaging. Substantial radiation dose savings are possible with DECT imaging if virtual noncontrast imaging reconstruction replaces precontrast imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the questions of whether the frequency of generation and in vivo cross-reactivity of highly immunogenic tumor clones induced in a single parental murine fibrosarcoma cell line MCA-F is more closely related to the agent used to induce the Imm$\sp{+}$ clone or whether these characteristics are independent of the agents used. These questions were addressed by treating the parental tumor cell line MCA-F with UV-B radiation (UV-B), 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), or 5-aza-2$\sp\prime$-deoxycytidine (5-azaCdR). The frequency of Imm$\sp{+}$ variant generation was similarly high for the three different agents, suggesting that the frequency of Imm$\sp{+}$ generation was related more closely to the cell line than to the inducing agent used. Cross-reactivity was tested with two Imm$\sp{+}$ clones from each treatment group in a modified immunoprotection assay that selectively engendered antivariant, but not antiparental immunity. Under these conditions each clone, except one, immunized against itself. The MNNG-induced clones engendered stronger antivariant immunity but a weaker variant cross-reactive immunity could also be detected.^ This study also characterized the lymphocyte populations responsible for antivariant and antiparental immunity in vivo. Using the local adoptive transfer assay (LATA) and antibody plus complement depletion of T-cell subsets, we showed that immunity induced by the Imm$\sp{+}$ variants against the parent MCA-F was transferred by the Thy1.2$\sp{+}$, L3T4a$\sp{+}$, Lyt2.1$\sp{-}$ (CD4$\sp{+}$) population, without an apparent contribution by Thy1.2$\sp{+}$, L3T4a$\sp{-}$, Lyt2.1$\sp{+}$ (CD8$\sp{+}$) cells. A role for Lyt2.1$\sp{+}$T lymphocytes in antivariant, but not antiparent immunity was supported by the results of LATA and CTL assays. Immunization with low numbers of viable Imm$\sp{+}$ cells, or with high numbers of non viable Imm$\sp{+}$ cells engendered only antivariant immunity without parental cross-protection. The associative recognition of parental antigens and variant neoantigens resulting in strong antiparent immunity was investigated using somatic cells hybrids of Imm$\sp{+}$ variants of MCA-F and an antigenically distinct tumor MCA-D. An unexpected result of these latter experiments was the expression of a unique tumor-specific antigen by the hybrid cells. These studies demonstrate that the parental tumor-specific antigen and the variant neoantigen must be coexpressed on the cell surface to engender parental cross-protective immunity. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carcinoma of the skin is the most common type of human cancer in the United States. Ultraviolet radiation (UVR) present in the sunlight is thought to be the major carcinogen responsible for induction of skin cancer. In UV-associated skin carcinogenesis, mutations in p53 are not only present with very high frequency, but occur early in the course of tumor development. In addition, UV-induced skin tumors in mice exhibit unique immunological characteristics. They are highly antigenic and express both individually-specific tumor transplantation antigens recognized by effector T cells and the UV-associated common antigen recognized by UV-induced suppressor T cells. ^ To examine the hypothesis that p53 plays a critical role in preventing skin cancer induction by UVR, mice constitutively lacking one or two functional p53 alleles were compared to wild-type mice for their susceptibility to UV carcinogenesis. Both p53 +/– and –/– mice showed greater susceptibility to skin cancer induction than wild-type mice, and –/– mice were the most susceptible, Accelerated tumor development in the p53 +/– mice was not associated with loss of the remaining wild-type allele of p53 , but in many cases was associated with UV-induced mutations in p53. Our studies clearly demonstrate the essential role of p53 in protection against UV carcinogenesis, particularly in the eye and epidermis. ^ The role of p53 in the antigenicity of UV-induced murine skin tumors was also addressed. Primary UV-induced tumors from p53 –/–, +/– and +/+ mice were transplanted into both normal and immunosuppressed mice, and rates of tumor rejection were compared. Tumors from mice with only one or no functional p53 alleles were less antigenic than those from mice with two functional p53 alleles. Moreover, tumors with no functional p53 also failed to grow well in chronically UV-irradiated mice. These results indicate that p53 contributes to the strong antigenicity of UV-induced murine skin tumors, and suggest that it may play a critical role in expression of the UV-associated common antigen recognized by suppressor T cells. ^ In this study we also monitored the effect of UVR on the development of lymphoid malignancies in p53 deficient mice. The incidence of lymphoid malignancies in UV-irradiated p53 +/– mice was drastically enhanced compared to that in unirradiated counterparts. The immune responses of the mice were identical and were suppressed to the same extent by UV irradiation regardless of the p53 genotype. These data provide the first experimental evidence that exposure to UVR can contribute to the development of lymphoid neoplasms in genetically susceptible hosts. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance