999 resultados para QUANTUM CHROMODYNAMICS
Resumo:
We propose a compact model which predicts the channel charge density and the drain current which match quite closely with the numerical solution obtained from the Full-Band structure approach. We show that, with this compact model, the channel charge density can be predicted by taking the capacitance based on the physical oxide thickness, as opposed to C-eff, which needs to be taken when using the classical solution.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
In this paper, we focus on the performance of a nanowire field-effect transistor in the ultimate quantum capacitance limit (UQCL) (where only one subband is occupied) in the presence of interface traps (D-it), parasitic capacitance (C-L), and source/drain series resistance (R-s,R-d), using a ballistic transport model and compare the performance with its classical capacitance limit (CCL) counterpart. We discuss four different aspects relevant to the present scenario, namely: 1) gate capacitance; 2) drain-current saturation; 3) subthreshold slope; and 4) scaling performance. To gain physical insights into these effects, we also develop a set of semianalytical equations. The key observations are as follows: 1) A strongly energy-quantized nanowire shows nonmonotonic multiple-peak C-V characteristics due to discrete contributions from individual subbands; 2) the ballistic drain current saturates better in the UQCL than in the CCL, both in the presence and absence of D-it and R-s,R-d; 3) the subthreshold slope does not suffer any relative degradation in the UQCL compared to the CCL, even with Dit and R-s,R-d; 4) the UQCL scaling outperforms the CCL in the ideal condition; and 5) the UQCL scaling is more immune to R-s,R-d, but the presence of D-it and C-L significantly degrades the scaling advantages in the UQCL.
Resumo:
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.
Resumo:
The method of Wigner distribution functions, and the Weyl correspondence between quantum and classical variables, are extended from the usual kind of canonically conjugate position and momentum operators to the case of an angle and angular momentum operator pair. The sense in which one has a description of quantum mechanics using classical phase‐space language is much clarified by this extension.
Resumo:
This article concerns a phenomenon of elementary quantum mechanics that is quite counter-intuitive, very non-classical, and apparently not widely known: a quantum particle can get reflected at a downward potential step. In contrast, classical particles get reflected only at upward steps. The conditions for this effect are that the wave length is much greater than the width of the potential step and the kinetic energy of the particle is much smaller than the depth of the potential step. This phenomenon is suggested by non-normalizable solutions to the time-independent Schroedinger equation, and we present evidence, numerical and mathematical, that it is also indeed predicted by the time-dependent Schroedinger equation. Furthermore, this paradoxical reflection effect suggests, and we confirm mathematically, that a quantum particle can be trapped for a long time (though not forever) in a region surrounded by downward potential steps, that is, on a plateau.
Resumo:
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.
Resumo:
The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The PbS quantum dots synthesized in PVA are used to investigate their photoluminescence (PL) response to various ions such as Zn, Cd, Hg, Ag, Cu, Fe, Mn, Co, Cr and Ni ions. The enhancement in the photoluminescence intensity is observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations is quite high, approximately an order of magnitude higher than Zn and Cd. It is interesting to observe that the change in Pb and S molar ratio has profound effect on the selectivity of these ions. The samples prepared under excess of S are quite effective compared to Pb. Indeed, the later one has hardly any effect on the photoluminescence response. These results also indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu, Fe and Co quenches the photoluminescence. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa), which is an interesting feature for metal ion detectivity.
Resumo:
Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
The no-hiding theorem says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the Universe with no information being hidden in the correlation between these two subsystems. Here, we report an experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance. We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits.