915 resultados para Pseudo-random
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
The variation of the viscosity as a function of the sequence distribution in an A-B random copolymer melt is determined. The parameters that characterize the random copolymer are the fraction of A monomers f, the parameter lambda which determines the correlation in the monomer identities along a chain and the Flory chi parameter chi(F) which determines the strength of the enthalpic repulsion between monomers of type A and B. For lambda>0, there is a greater probability of finding like monomers at adjacent positions along the chain, and for lambda<0 unlike monomers are more likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the phase diagram for the modified model has a binary fluid type transition for lambda>0 and does not exhibit a phase transition for lambda<0. A mode coupling analysis is used to determine the renormalization of the viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the dissipative nature of the coupling. there are nonlinearities both in the transport equation and in the noise correlation. The concentration dependence of the transport coefficient presents additional difficulties in the formulation due to the Ito-Stratonovich dilemma, and there is some ambiguity about the choice of the concentration to be used while calculating the noise correlation. In the Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the calculation of the transport coefficient, when coupled with a causal discretization scheme, provides a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This functional integral formalism is used in the present analysis, and consistency is verified for the present problem as well. The upper critical dimension for this type of renormaliaation is 2, and so there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there is a systematic dependence of the viscosity on lambda and chi(F). The fluctuations tend to increase the viscosity for lambda<0, and decrease the viscosity for lambda>0, and an increase in chi(F) tends to decrease the viscosity. (C) 1996 American Institute of Physics.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
We calculate analytically the average number of fixed points in the Hopfield model of associative memory when a random antisymmetric part is added to the otherwise symmetric synaptic matrix. Addition of the antisymmetric part causes an exponential decrease in the total number of fixed points. If the relative strength of the antisymmetric component is small, then its presence does not cause any substantial degradation of the quality of retrieval when the memory loading level is low. We also present results of numerical simulations which provide qualitative (as well as quantitative for some aspects) confirmation of the predictions of the analytic study. Our numerical results suggest that the analytic calculation of the average number of fixed points yields the correct value for the typical number of fixed points.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
The various techniques available for the analysis of nonlinear systems subjected to random excitations are briefly introduced and an overview of the progress which has been made in this area of research is presented. The discussion is mainly focused on the basis, scope and limitations of the solution techniques and not on specific applications.
Resumo:
We report enhanced emission and gain narrowing in Rhodamine 590 perchlorate dye in an aqueous suspension of polystyrene microspheres. A systematic experimental study of the threshold condition for and the gain narrowing of the stimulated emission over a wide range of dye concentrations and scatterer number densities showed several interesting features, even though the transport mean free path far exceeded the system size. The conventional diffusive-reactive approximation to radiative transfer in an inhomogeneously illuminated random amplifying medium, which is valid for a transport mean-free path much smaller than the system size, is clearly inapplicable here. We propose a new probabilistic approach for the present case of dense, random, weak scatterers involving the otherwise rare and ignorable sub-mean-free-path scatterings, now made effective by the high gain in the medium, which is consistent: with experimentally observed features. (C) 1997 Optical Society of America.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.
Resumo:
In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.