986 resultados para Proto-oncogene
Resumo:
BACKGROUND: REAL3 (Randomised ECF for Advanced or Locally advanced oesophagogastric cancer 3) was a phase II/III trial designed to evaluate the addition of panitumumab (P) to epirubicin, oxaliplatin and capecitabine (EOC) in untreated advanced oesophagogastric adenocarcinoma, or undifferentiated carcinoma. MAGIC (MRC Adjuvant Gastric Infusional Chemotherapy) was a phase III study which demonstrated that peri-operative epirubicin, cisplatin and infused 5-fluorouracil (ECF) improved survival in early oesophagogastric adenocarcinoma. PATIENTS AND METHODS: Analysis of response rate (RR; the primary end-point of phase II) and biomarkers in the first 200 patients randomised to EOC or modified dose (m) EOC+P in REAL3 was pre-planned to determine if molecular selection for the on-going study was indicated. KRAS, BRAF and PIK3CA mutations and PTEN expression were assessed in pre-treatment biopsies and results correlated with response to mEOC+P. Association between these biomarkers and overall survival (OS) was assessed in MAGIC patients to determine any prognostic effect. RESULTS: RR was 52% to mEOC+P, 48% to EOC. Results from 175 assessable biopsies: mutations in KRAS (5.7%), BRAF (0%), PIK3CA (2.5%) and loss of PTEN expression (15.0%). None of the biomarkers evaluated predicted resistance to mEOC+P. In MAGIC, mutations in KRAS, BRAF and PIK3CA and loss of PTEN (phosphatase and tensin homolog) were found in 6.3%, 1.0%, 5.0% and 10.9%, respectively, and were not associated with survival. CONCLUSIONS: The RR of 52% in REAL3 with mEOC+P met pre-defined criteria to continue accrual to phase III. The frequency of the mutations was too low to exclude any prognostic or predictive effect.
Resumo:
The incidence of melanoma has increased rapidly over the past 30 years, and the disease is now the sixth most common cancer among men and women in the U.K. Many patients are diagnosed with or develop metastatic disease, and survival is substantially reduced in these patients. Mutations in the BRAF gene have been identified as key drivers of melanoma cells and are found in around 50% of cutaneous melanomas. Vemurafenib (Zelboraf(®) ; Roche Molecular Systems Inc., Pleasanton, CA, U.S.A.) is the first licensed inhibitor of mutated BRAF, and offers a new first-line option for patients with unresectable or metastatic melanoma who harbour BRAF mutations. Vemurafenib was developed in conjunction with a companion diagnostic, the cobas(®) 4800 BRAF V600 Mutation Test. The purpose of this paper is to make evidence-based recommendations to facilitate the implementation of BRAF mutation testing and targeted therapy in patients with metastatic melanoma in the U.K. The recommendations are the result of a meeting of an expert panel and have been reviewed by melanoma specialists and representatives of the National Cancer Research Network Clinical Study Group on behalf of the wider melanoma community. This article is intended to be a starting point for practical advice and recommendations, which will no doubt be updated as we gain further experience in personalizing therapy for patients with melanoma.
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
BACKGROUND: KRAS mutation testing is required to select patients with metastatic colorectal cancer (CRC) to receive anti-epidermal growth factor receptor antibodies, but the optimal KRAS mutation test method is uncertain. METHODS: We conducted a two-site comparison of two commercial KRAS mutation kits - the cobas KRAS Mutation Test and the Qiagen therascreen KRAS Kit - and Sanger sequencing. A panel of 120 CRC specimens was tested with all three methods. The agreement between the cobas test and each of the other methods was assessed. Specimens with discordant results were subjected to quantitative massively parallel pyrosequencing (MPP). DNA blends were tested to determine detection rates at 5% mutant alleles. RESULTS: Reproducibility of the cobas test between sites was 98%. Six mutations were detected by cobas that were not detected by Sanger, and five were confirmed by MPP. The cobas test detected eight mutations which were not detected by the therascreen test, and seven were confirmed by MPP. Detection rates with 5% mutant DNA blends were 100% for the cobas and therascreen tests and 19% for Sanger. CONCLUSION: The cobas test was reproducible between sites, and detected several mutations that were not detected by the therascreen test or Sanger. Sanger sequencing had poor sensitivity for low levels of mutation.
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
Resumo:
The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.
Resumo:
INTRODUCTION: The presence of ROS proto-oncogene 1, receptor tyrosine kinase gene (ROS1) rearrangements in lung cancers confers sensitivity to ROS kinase inhibitors, including crizotinib. However, they are rare abnormalities (in ∼1% of non-small cell lung carcinomas) that are typically identified by fluorescence in situ hybridization (FISH), and so screening using immunohistochemical (IHC) staining would be both cost- and time-efficient.
METHODS: A cohort of lung tumors negative for other common mutations related to targeted therapies were screened to assess the sensitivity and specificity of IHC staining in detecting ROS1 gene rearrangements, enriched by four other cases first identified by FISH. A review of published data was also undertaken.
RESULTS: IHC staining was 100% sensitive (95% confidence interval: 48-100) and 83% specific (95% confidence interval: 86-100) overall when an h-score higher than 100 was used. Patients with ROS1 gene rearrangements were younger and typically never-smokers, with the tumors all being adenocarcinomas with higher-grade architectural features and focal signet ring morphologic features (two of five). Four patients treated with crizotinib showed a partial response, with three also showing a partial response to pemetrexed. Three of four patients remain alive at 13, 27, and 31 months, respectively.
CONCLUSION: IHC staining can be used to screen for ROS1 gene rearrangements, with patients herein showing a response to crizotinib. Patients with tumors that test positive according to IHC staining but negative according to FISH were also identified, which may have implications for treatment selection.
Resumo:
Multiple endocrine neoplasia syndromes have since been classified as types 1 and 2, each with specific phenotypic patterns. MEN1 is usually associated with pituitary, parathyroid and paraneoplastic neuroendocrine tumours. The hallmark of MEN2 is a very high lifetime risk of developing medullary thyroid carcinoma (MTC) more than 95% in untreated patients. Three clinical subtypesdMEN2A, MEN2B, and familial MTC (FMTC) have been defined based on the risk of pheochromocytoma, hyperparathyroidism, and the presence or absence of characteristic physical features). MEN2 occurs as a result of germline activating missense mutations of the RET (REarranged during Transfection) proto-oncogene. MEN2-associated mutations are almost always located in exons 10, 11, or 13 through 16. Strong genotype-phenotype correlations exist with respect to clinical subtype, age at onset, and aggressiveness of MTC in MEN2. These are used to determine the age at which prophylactic thyroidectomy should occur and whether screening for pheochromocytoma or hyperparathyroidism is necessary. Specific RET mutations can also impact management in patients presenting with apparently sporadic MTC. Therefore, genetic testing should be performed before surgical intervention in all patients diagnosed with MTC. Recently, Pellegata et al. have reported that germline mutations in CDKN1B can predispose to the development of multiple endocrine tumours in both rats and humans and this new MEN syndrome is named MENX and MEN4, respectively. CDKN1B. A recent report showed that in sporadic MTC, CDKN1B V109G polymorphism correlates with a more favorable disease progression than the wild-type allele and might be considered a new promising prognostic marker. New insights on MEN syndrome pathogenesis and related inherited endocrine disorders are of particular interest for an adequate surgical and therapeutic approach.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Background: Papillary thyroid carcinoma (PTC) is frequently associated with a RET gene rearrangement that generates a RET/PTC oncogene. RET/PTC is a fusion of the tyrosine kinase domain of RET to the 50 portion of a different gene. This fusion results in a constitutively active MAPK pathway, which plays a key role in PTC development. The RET/PTC3 fusion is primarily associated with radiation-related PTC. Epidemiological studies show a lower incidence of PTC in radiation-exposed regions that are associated with an iodine-rich diet. Since the influence of excess iodine on the development of thyroid cancer is still unclear, the aim of this study is to evaluate the effect of high iodine concentrations on RET/PTC3-activated thyroid cells. Methods: PTC3-5 cells, a rat thyroid cell lineage harboring doxycycline-inducible RET/PTC3, were treated with 10(-3) M NaI. Cell growth was analyzed by cell counting and the MTT assay. The expression and phosphorylation state of MAPK pathway-related (Braf, Erk, pErk, and pRet) and thyroid-specific (natrium-iodide symporter [Nis] and thyroid-stimulating hormone receptor [Tshr]) proteins were analyzed by Western blotting. Thyroid-specific gene expression was further analyzed by quantitative reverse transcription (RT)-polymerase chain reaction. Results: A significant inhibition of proliferation was observed, along with no significant variation in cell death rate, in the iodine-treated cells. Further, iodine treatment attenuated the loss of Nis and Tshr gene and protein expression induced by RET/PTC3 oncogene induction. Finally, iodine treatment reduced Ret and Erk phosphorylation, without altering Braf and Erk expression. Conclusion: Our results indicate an antioncogenic role for excess iodine during thyroid oncogenic activation. These findings contribute to a better understanding of the effect of iodine on thyroid follicular cells, particularly how it may play a protective role during RET/PTC3 oncogene activation.
Resumo:
In order to derive mice which expressed both the E7 open reading frame transgene of human papillomavirus type 16 in skin and MHC class 1 restriction elements for several E7-encoded cytotoxic T-lymphocyte (CTL) epitopes, K14.HPV16E7 mice which express E7 in basal keratinocytes were crossed to the F1 generation with A2.1 K-b transgenic mice which express the MHC binding cleft domains of human HLA A*0201, and murine H-2(b). F1 mice (denoted K14E7xA2.1) expressed E7 in the thymus at least as early as 2-5 days before birth. Immunisation of FVBxA2.1 control mice (transgenic for HLA A*0201 and H-2(b) but not for E7), with two HLA A*0201-restricted epitopes of E7 and one H-2(b)-restricted CTL epitope of E7, gave strong primary CTL responses recognising epitope-pulsed or constitutively E7-expressing syngeneic target cells. In contrast, in immunised K14E7xA2.1 mice, the CTL responses to the H-2(b) epitope and one of the HLA A*0201 CTL epitopes were strongly down-regulated, and to the other HLA A*0201 epitope, completely abolished, as demonstrated by percentage specific killing by bulk splenocyte cultures in cyrotoxicity assays, and by CTL precursor frequency analysis, In thymus-transplanted bone marrow radiation chimeras in which the immune system of K14E7xA2.1 mice was replaced by a FVBxA2.1 immune system, specific immunisation did not result in reemergence of strong E7-directed CTL responses. In agreement with these in vitro findings, specific immunisation failed to significantly alter the course of E7-associated tumour development in K14E7xA2.1 mice. These data are consistent with a model of central deletional CTL tolerance to E7-encoded epitopes recognised in the context of two distinct MHC class 1 restriction elements, and with the possibility of peripheral T-cell anergy maintained by expression of E7 in the skin. (C) 1998 Academic Press.
Resumo:
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development(1,2). Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations(3), is necessary for normal esophageal squamous development(4), promotes differentiation and proliferation of basal tracheal cells(5) and cooperates in induction of pluripotent stem cells(6-8). SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
Resumo:
The oncogene GLI1 is involved in the formation of basal cell carcinoma and other tumor types as a result of the aberrant signaling of the Sonic hedgehog-Patched pathway. In this study, we have identified alternative GLI1 transcripts that differ in their 5' untranslated regions (UTRs) and are generated by exon skipping. These are denoted (alpha -UTR, beta -UTR, and gamma -UTR according to the number of noncoding exons possessed (three, two, and one, respectively). The alpha- and beta -UTR forms represent the major Gli1 transcripts expressed in mouse tissues, whereas the gamma -UTR is present at relatively low levels but is markedly induced in mouse skin treated with 12-O-tetradecanoylphorbol 13-acetate, Transcripts corresponding to the murine beta and gamma forms were identified in human tissues, but significantly, only the gamma -UTR form was present in basal cell carcinomas and in proliferating cultures of a keratinocyte cell line. Flow cytometry analysis determined that the gamma -UTR variant expresses a heterologous reporter gene 14-23-fold higher than the alpha -UTR and 5-13-fold higher than the beta -UTR in a variety of cell types. Because expression of the gamma -UTR variant correlates with proliferation, consistent with a role for GLI1 in growth promotion, up-regulation of GLI1 expression through skipping of 5' noncoding exons may be an important tumorigenic mechanism.