950 resultados para Proto-Oncogene Proteins c-myc -- genetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CDC73 gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. It negatively regulates beta-catenin, cyclin D1, and c-MYC. Down-regulation of CDC73 has been reported in breast, renal, and gastric carcinomas. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. In this study we show that CDC73 is down-regulated in a majority of OSCC samples. We further show that oncogenic microRNA-155 (miR-155) negatively regulates CDC73 expression. Our experiments show that the dramatic up-regulation of miR-155 is an exclusive mechanism for down-regulation of CDC73 in a panel of human cell lines and a subset of OSCC patient samples in the absence of loss of heterozygosity, mutations, and promoter methylation. Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability, and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells overexpressing miR-155 resulted in increased CDC73 levels, decreased cell viability, increased apoptosis, and marked regression of xenografts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3'-UTR in CDC73. In summary, knockdown of CDC73 expression due to overexpression of miR-155 not only adds a novelty to the list of mechanisms responsible for its down-regulation in different tumors, but the restoration of CDC73 levels by the use of antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tem sido descrito que o acúmulo de mutações em proto-oncogenes e genes supressores de tumor contribui para o direcionamento da célula à carcinogênese. Na maioria dos casos de câncer, as células apresentam proliferação descontrolada devido a alterações na expressão e/ou mutações de ciclinas, quinases dependentes de ciclinas e/ou inibidores do ciclo celular. Os tumores sólidos figuram entre o tipo de câncer mais incidente no mundo, sendo a quimioterapia e/ou hormônio-terapia, radioterapia e cirurgia os tratamentos mais indicados para estes tipos de tumores. Entretanto, o tratamento quimioterápico apresenta diversos efeitos colaterais e muitas vezes é ineficaz. Portanto, a busca por novas moléculas capazes de conter a proliferação destas células e com baixa toxicidade para o organismo se faz necessário. Este trabalho teve por objetivo avaliar a ação antitumoral in vitro de um novo composto sintético, a pterocarpanoquinona LQB118, sobre algumas linhagens tumorais humanas de alta prevalência e estudar alguns dos seus mecanismos de ação. As linhagens tumorais estudadas neste trabalho foram os adenocarcinomas de mama (MCF7) e próstata (PC-3), e carcinoma de pulmão (A549). A citotoxicidade foi avaliada pelo ensaio do MTT e a proliferação celular pela contagem de células vivas (exclusão do corante azul de tripan) e análise do ciclo celular (citometria de fluxo). A expressão gênica foi avaliada por RT-PCR e a apoptose foi avaliada por condensação da cromatina (microscopia de fluorescência-DAPI), fragmentação de DNA (eletroforese) e marcação com anexina V (citometria de fluxo). Das linhagens tumorais testadas, a de próstata (PC3) foi a que se mostrou mais sensível ao LQB 118, e em função deste resultado, os demais experimentos foram realizados com esta linhagem tumoral. O efeito citotóxico do LQB 118 se mostrou tempo e concentração dependente. Esta substância inibiu a proliferação celular e prejudicou a progressão do ciclo celular, acumulando células nas fases S e G2/M. Buscando esclarecer os mecanismos desta ação antitumoral, demonstrou-se que o LQB 118 inibe a expressão do mRNA do fator de transcrição c-Myc e das ciclinas D1 e B1, e induz a apoptose de tais células tumorais. Em suma, o LQB 118 é capaz de inibir a proliferação das células tumorais de próstata, alterando a expressão do mRNA de alguns genes reguladores do ciclo celular, resultando em interrupção do ciclo celular e indução de apoptose, indicando este composto como um potencial candidato a futuro medicamento no tratamento do câncer de próstata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhein, an anthraquinone derivative of rhubarb, inhibits the proliferation of various human cancer cells. In this paper, we focused on studying the effects of rhein on human hepatocelluar carcinoma BEL-7402 cells and further understanding the underlying molecular mechanism in an effort to make the potential development of rhein in the treatment of cancers. Using MTT assay and flow cytometry, we demonstrate a critical role of rhein in the suppression of BEL-7402 cell proliferation in a concentration- and time-dependent manner. The increase of apoptosis rate was observed after incubation of BEL-7402 cells with rhein at 50-200 mu M for 48 hours, and the cells exhibit typical apoptotic features including cellular morphological change and chromatin condensation. Moreover, rhein-induced cell cycle S-phase arrest. Additionally, after rhein treatment, expression levels of c-Myc gene were decreased, while those of caspase-3 gene were increased in a dose-dependent manner by using real-time PCR assay. The results demonstrate for the first time that cell cycle S-phase arrest is one of the mechanisms of rhein in inhibition of BEL-7402 cells. Rhein plays its role by inducing cell cycle arrest via downregulation of oncogene c-Myc and apoptosis through the caspase-dependent pathway. It is expected that rhein will be effective and useful as a new agent in hepatocelluar carcinoma treatment in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults. Its treatment has remained largely unchanged for the past 30 years. Chronic myeloid leukaemia (CML) represents a tremendous success story in the era of targeted therapy but significant challenges remain including the development of drug resistance and disease persistence due to presence of CML stem cells. The Aurora family of kinases is essential for cell cycle regulation and their aberrant expression in cancer prompted the development of small molecules that selectively inhibit their activity. Chapter 2 of this thesis outlines the efficacy and mechanism of action of alisertib, a novel inhibitor of Aurora A kinase, in preclinical models of CML. Alisertib possessed equipotent activity against CML cells expressing unmutated and mutated forms of BCR-ABL. Notably, this agent retained high activity against the T315I and E255K BCR-ABL mutations, which confer the greatest degree of resistance to standard CML therapy. Chapter 3 explores the activity of alisertib in preclinical models of AML. Alisertib disrupted cell viability, diminished clonogenic survival, induced expression of the forkhead box O3 (FOXO3a) targets p27 and BCL-2 interacting mediator (BIM), and triggered apoptosis. A link between Aurora A expression and sensitivity to ara-C was established. Chapter 4 outlines the role of the proto-oncogene serine/threonine-protein (PIM) kinases in resistance to ara-C in AML. We report that the novel small molecule PIM kinase inhibitor SGI-1776 disrupted cell viability and induced apoptosis in AML. We establish a link between ara-C resistance and PIM over-expression. Finally, chapter 5 explores how the preclinical work outlined in this thesis may be translated into clinical studies that may lead to novel therapeutic approaches for patients with refractory myeloid leukaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoresistance is a major contributor to the aggressiveness of AML and is often due to insufficient apoptosis. The CFLAR gene is expressed as long and short splice forms encoding the anti-apoptotic proteins c-FLIP(L) and c-FLIP(S) (CFLAR(L) and CFLAR(S) , respectively) that play important roles in drug resistance. In univariate analyses of CFLAR mRNA expression in adult AML patients, those individuals with higher than median mRNA expression of the long splice form CFLAR(L) (but not the short splice form) had significantly lower 3 year overall survival (P = 0·04) compared to those with low expression. In cell line studies, simultaneous down-regulation of c-FLIP(L) and c-FLIP(S) proteins using siRNA induced apoptosis in U937 and NB-4 AML cells, but not K562 or OCI-AML3 cells. However, dual c-FLIP(L/S) downregulation sensitized all four cell lines to apoptosis induced by recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL). Moreover, specific downregulation of c-FLIP(L) was found to recapitulate the phenotypic effects of dual c-FLIP(L/S) downregulation. The histone deacetylase (HDAC)1/2/3/6 inhibitor Vorinostat was found to potently down-regulate c-FLIP(L) expression by transcriptional and post-transcriptional mechanisms and to sensitize AML cells to rTRAIL. Further analyses using more selective HDAC inhibitors revealed that HDAC6 inhibition was not required for c-FLIP(L) down-regulation. These results suggest that c-FLIP(L) may have clinical relevance both as a prognostic biomarker and potential therapeutic target for HDAC inhibitors in AML although this requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1–CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3 (rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05). Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1–CCN3 signalling contributes to the pathogenesis of CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the transforming oncogene bcr-abl in chronic myelogenous leukemia (CML) cells is reported to confer resistance against apoptosis induced by many chemotherapeutic agents such as etoposide, ara-C, and staurosporine. In the present study some members of a series of novel pyrrolo-1,5-benzoxazepines potently induce apoptosis, as shown by cell shrinkage, chromatin condensation, DNA fragmentation, and poly(ADP-ribose) polymerase (PARP) cleavage, in three CML cell lines, K562, KYO.1, and LAMA 84. Induction of apoptosis by a representative member of this series, PBOX-6, was not accompanied by either the down-regulation of Bcr-Abl or by the attenuation of its protein tyrosine kinase activity up to 24 h after treatment, when approximately 50% of the cells had undergone apoptosis. These results suggest that down-regulation of Bcr-Abl is not part of the upstream apoptotic death program activated by PBOX-6. By characterizing the mechanism in which this novel agent executes apoptosis, this study has revealed that PBOX-6 caused activation of caspase 3-like proteases in only two of the three CML cell lines. In addition, inhibition of caspase 3-like protease activity using the inhibitor z-DEVD-fmk blocked caspase 3-like protease activity but did not prevent the induction of apoptosis, suggesting that caspase 3-like proteases are not essential in the mechanism by which PBOX-6 induces apoptosis in CML cells. In conclusion, this study demonstrates that PBOX-6 can bypass Bcr-Abl-mediated suppression of apoptosis, suggesting an important potential use of these compounds in the treatment of CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone γ-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP. Previous Section Next Section BGP1 (bone Gla protein or osteocalcin) and MGP (matrix Gla protein) belong to the growing family of vitamin K-dependent (VKD) proteins, the members of which are involved in a broad range of biological functions such as skeletogenesis and bone maintenance (BGP and MGP), hemostasis (prothrombin, clotting factors VII, IX, and X, and proteins C, S, and Z), growth control (gas6), and potentially signal transduction (proline-rich Gla proteins 1 and 2). VKD proteins are characterized by the presence of several Gla residues resulting from the post-translational vitamin K-dependent γ-carboxylation of specific glutamates, through which they can bind to calcium-containing mineral such as hydroxyapatite. To date, VKD proteins have only been clearly identified in vertebrates (1) although the presence of a γ-glutamyl carboxylase has been reported in the fruit fly Drosophila melanogaster (2) and in marine snails belonging to the genus Conus (3). Gla residues have also been found in neuropeptides from Conus venoms (4), suggesting a wider prevalence of γ-carboxylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les lymphocytes B et T sont issus de cellules progénitrices lymphoïdes de la moelle osseuse qui se différencient grâce à l’action de facteurs de transcription, cytokines et voies de signalisation, dont l’interleukine-7 (IL-7)/IL-7 récepteur (IL-7R). Le facteur de transcription c-Myc est exprimé par les cellules lymphoïdes et contrôle leur croissance et leur différenciation. Cette régulation transcriptionnelle peut être coordonnée par le complexe c-Myc/Myc-Interacting Zinc finger protein-1 (Miz-1). Le but de ce projet était de comprendre les mécanismes qui impliquent Miz-1 et le complexe c-Myc/Miz-1 dans le développement des lymphocytes B et T. Pour réaliser ce projet, des souris déficientes pour le domaine de transactivation de Miz-1 (Miz-1POZ) et des souris à allèles mutantes pour c-MycV394D, mutation qui empêche l’interaction avec Miz-1, ont été générées. La caractérisation des souris Miz 1POZ a démontré que l’inactivation de Miz-1 perturbe le développement des lymphocytes B et T aux stades précoces de leur différenciation qui dépend de l’IL-7. L’analyse de la cascade de signalisation IL-7/IL-7R a montré que ces cellules surexpriment la protéine inhibitrice SOCS1 qui empêche la phosphorylation de STAT5 et perturbe la régulation à la hausse de la protéine de survie Bcl-2. De plus, Miz-1 se lie directement au promoteur de SOCS1 et contrôle son activité. En plus de contrôler l’axe IL-7/IL-7R/STAT5/Bcl-2 spécifiquement aux stades précoces du développement afin d’assurer la survie des progéniteurs B et T, Miz-1 régule l’axe EBF/Pax-5/Rag-1/2 dans les cellules B afin de coordonner les signaux nécessaires pour la différenciation des cellules immatures. La caractérisation des souris c-MycV394D a montré, quant à elle, que les fonctions de Miz-1 dans les cellules B et T semblent indépendantes de c-Myc. Les cellules T des souris Miz-1POZ ont un défaut de différenciation additionnel au niveau de la -sélection, étape où les signaux initiés par le TCR remplacent ceux induits par IL-7 pour assurer la prolifération et la différenciation des thymocytes en stades plus matures. À cette étape du développement, une forme fonctionnelle de Miz-1 semble être requise pour contrôler le niveau d’activation de la voie p53, induite lors du processus de réarrangement V(D)J du TCR. L’expression de gènes pro-apoptotiques PUMA, NOXA, Bax et du régulateur de cycle cellulaire p21CIP1 est régulée à la hausse dans les cellules des souris Miz-1POZ. Ceci provoque un débalancement pro-apoptotique qui empêche la progression du cycle cellulaire des cellules TCR-positives. La survie des cellules peut être rétablie à ce stade de différenciation en assurant une coordination adéquate entre les signaux initiés par l’introduction d’un TCR transgénique et d’un transgène codant pour la protéine Bcl-2. En conclusion, ces études ont montré que Miz-1 intervient à deux niveaux du développement lymphoïde: l’un précoce en contrôlant la signalisation induite par l’IL-7 dans les cellules B et T, en plus de l’axe EBF/Pax-5/Rag-1/2 dans les cellules B; et l’autre tardif, en coordonnant les signaux de survie issus par le TCR et p53 dans les cellules T. Étant donné que les thymocytes et lymphocytes B immatures sont sujets à plusieurs rondes de prolifération, ces études serviront à mieux comprendre l’implication des régulateurs du cycle cellulaire comme c-Myc et Miz-1 dans la génération des signaux nécessaires à la différenciation non aberrante et à la survie des ces cellules. Enfin, les modèles expérimentaux, souris déficientes ou à allèles mutantes, utilisés pour ce travail permettront de mieux définir les bases moléculaires de la transformation maligne des lymphocytes B et T et de révéler les mécanismes conduisant au lymphome.