917 resultados para Printing machinery and supplies
Resumo:
Figer (to congeal, to solidify) is a quadraphonic electroacoustic composition. It was completed in the fall of 2003. Several software programs were used in creating and assembling the piece (C-Sound, Grain Mill, AL/Erwin (grain generator), Sound Forge and Acid Music). The sounds used in the piece are of two general types: synthesized and sampled, both of which were subjected to various processing techniques. The most important of these techniques, and one that formally defines large portions of the piece, is granular synthesis. Form The notion of time perception is of great importance in this piece. Figer addresses this question in several ways. In one sense, the form of Figer is simple. There are three layers of activity (see diagram). Layer 1 is continuous and non-sectional and supplies a backdrop (not necessarily a background) for the other two. The second and third layers overlap and interrupt one another. Each consists of two blocks of sound. The layers, and blocks within, relate to each other in various ways. Layer 1 is formally continuous. Layer 2 consists of well-defined columns of sound that evolve from soft and mild to loud and abrasive. The layer is, in reality, a whole that is simply cut into two parts (block 1 and block 2). In contrast, the blocks of layer 3 do not constitute a whole. Each is a complete unit and has its own self-contained evolutionary path. Those paths, however, do cross the paths of other units (layers, blocks), influencing them and absorbing some of their essence. At the heart of Figer lies a constant process of presenting materials or ideas and immediately, or, at times, simultaneously, commenting, reflecting on, or reinterpreting that material. All of the layers of this piece deal, both at local and global levels, with the problem of time and its perception relative to the materials, sonic or otherwise, that occupy it and the manner in which they unfold and relate to each other.
Resumo:
We have developed an alternative approach to optical design which operates in the analytical domain so that an optical designer works directly with rays as analytical functions of system parameters rather than as discretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit pupil) on each system parameter. The resulting method provides an alternative direction from which to approach system optimization and supplies information which is not typically available to the system designer. In addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approximation, and have illustrated the performance of the method through three lens design examples.
Resumo:
Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.
Resumo:
The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects <or =40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.
Resumo:
This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.
Resumo:
Poverty alleviation lies at the heart of contemporary international initiatives on development. The key to development is the creation of an environment in which people can develop their potential, leading productive, creative lives in accordance with their needs, interests and faith. This entails, on the one hand, protecting the vulnerable from things that threaten their survival, such as inadequate nutrition, disease, conflict, natural disasters and the impact of climate change, thereby enhancing the poor’s capabilities to develop resilience in difficult conditions. On the other hand, it also requires a means of empowering the poor to act on their own behalf, as individuals and communities, to secure access to resources and the basic necessities of life such as water, food, shelter, sanitation, health and education. ‘Development’, from this perspective, seeks to address the sources of human insecurity, working towards ‘freedom from want, freedom from fear’ in ways that empower the vulnerable as agents of development (not passive recipients of benefaction).
Recognition of the magnitude of the problems confronted by the poor and failure of past interventions to tackle basic issues of human security led the United Nations (UN) in September 2000 to set out a range of ambitious, but clearly defined, development goals to be achieved by 2015. These are known as the Millennium Development Goals (MDGs). The intention of the UN was to mobilise multilateral international organisations, non-governmental organisations and the wider international community to focus attention on fulfilling earlier promises to combat global poverty. This international framework for development prioritises: the eradication of extreme poverty and hunger; achieving universal primary education; promoting gender equality and empowering women; reducing child mortality; improving maternal health; combating HIV/AIDS, malaria and other diseases; ensuring environmental sustainability; and developing a global partnership for development. These goals have been mapped onto specific targets (18 in total) against which outcomes of associated development initiatives can be measured and the international community held to account. If the world achieves the MDGs, more than 500 million people will be lifted out of poverty. However, the challenges the goals represent are formidable. Interim reports on the initiative indicate a need to scale-up efforts and accelerate progress.
Only MDG 7, Target 11 explicitly identifies shelter as a priority, identifying the need to secure ‘by 2020 a significant improvement in the lives of at least 100 million slum dwellers’. This raises a question over how Habitat for Humanity’s commitment to tackling poverty housing fits within this broader international framework designed to allievate global poverty. From an analysis of HFH case studies, this report argues that the processes by which Habitat for Humanity tackles poverty housing directly engages with the agenda set by the MDGs. This should not be regarded as a beneficial by-product of the delivery of decent, affordable shelter, but rather understood in terms of the ways in which Habitat for Humanity has translated its mission and values into a participatory model that empowers individuals and communities to address the interdependencies between inadequate shelter and other sources of human insecurity. What housing can deliver is as important as what housing itself is.
Examples of the ways in which Habitat for Humanity projects engage with the MDG framework include the incorporation of sustainable livelihoods strategies, up-grading of basic infrastructure and promotion of models of good governance. This includes housing projects that have also offered training to young people in skills used in the construction industry, microfinanced loans for women to start up their own home-based businesses, and the provision of food gardens. These play an important role in lifting families out of poverty and ensuring the sustainability of HFH projects. Studies of the impact of improved shelter and security of livelihood upon family life and the welfare of children evidence higher rates of participation in education, more time dedicated to study and greater individual achievement. Habitat for Humanity projects also typically incorporate measures to up-grade the provision of basic sanitation facilities and supplies of safe, potable drinking water. These measures not only directly help reduce mortality rates (e.g. diarrheal diseases account for around 2 million deaths annually in children under 5), but also, when delivered through HFH project-related ‘community funds’, empower the poor to mobilise community resources, develop local leadership capacities and even secure de facto security of tenure from government authorities.
In the process of translating its mission and values into practical measures, HFH has developed a range of innovative practices that deliver much more than housing alone. The organisation’s participatory model enables both direct beneficiaries and the wider community to tackle the insecurities they face, unlocking latent skills and enterprise, building sustainable livelihood capabilities. HFH plays an important role as a catalyst for change, delivering through the vehicle of housing the means to address the primary causes of poverty itself. Its contribution to wider development priorities deserves better recognition. In calibrating the success of HFH projects in terms of units completed or renovated alone, the significance of the process by which HFH realises these outcomes is often not sufficiently acknowledged, both within the organisation and externally. As the case studies developed in the report illustrate, the methodologies Habitat for Humanity employs to address the issue of poverty housing within the developing world, place the organisation at the centre of a global strategic agenda to address the root causes of poverty through community empowerment and the transformation of structures of governance.
Given this, the global network of HFH affiliates constitutes a unique organisational framework to faciliate sharing resources, ideas and practical experience across a diverse range of cultural, political and institutional environments. This said, it is apparent that work needs to be done to better to faciliate the pooling of experience and lessons learnt from across its affiliates. Much is to be gained from learning from less successful projects, sharing innovative practices, identifying strategic partnerships with donors, other NGOs and CBOs, and engaging with the international development community on how housing fits within a broader agenda to alleviate poverty and promote good governance.
Resumo:
This article identifies the author of a hitherto anonymous poem and supplies its ending, previously believed to be missing. It adds a sixth poem to the surviving work of Einion ap Gwalchmai.
Resumo:
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic gram-negative pathogen that causes respiratory infections and is associated with progression of respiratory diseases. Cigarette smoke is a main risk factor for development of respiratory infections and chronic respiratory diseases. Glucocorticoids, which are anti-inflammatory drugs, are still the most common therapy for these diseases. Alveolar macrophages are professional phagocytes that reside in the lung and are responsible for clearing infections by the action of their phagolysosomal machinery and promotion of local inflammation. In this study, we dissected the interaction between NTHI and alveolar macrophages and the effect of cigarette smoke on this interaction. We showed that alveolar macrophages clear NTHI infections by adhesion, phagocytosis, and phagolysosomal processing of the pathogen. Bacterial uptake requires host actin polymerization, the integrity of plasma membrane lipid rafts, and activation of the phosphatidylinositol 3-kinase (PI3K) signaling cascade. Parallel to bacterial clearance, macrophages secrete tumor necrosis factor alpha (TNF-alpha) upon NTHI infection. In contrast, exposure to cigarette smoke extract (CSE) impaired alveolar macrophage phagocytosis, although NTHI-induced TNF-alpha secretion was not abrogated. Mechanistically, our data showed that CSE reduced PI3K signaling activation triggered by NTHI. Treatment of CSE-exposed cells with the glucocorticoid dexamethasone reduced the amount of TNF-alpha secreted upon NTHI infection but did not compensate for CSE-dependent phagocytic impairment. The deleterious effect of cigarette smoke was observed in macrophage cell lines and in human alveolar macrophages obtained from smokers and from patients with chronic obstructive pulmonary disease.
Resumo:
Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of 'CaaX' motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis.
Resumo:
Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.
Resumo:
The Gram-negative bacterial type VI Secretion System (T6SS) delivers toxins to kill orinhibit the growth of susceptible bacteria, while others target eukaryotic cells. Deletionof atsR, a negative regulator of virulence factors in B. cenocepacia K56-2, increasesT6SS activity. Macrophages infected with a K56-2 ΔatsR mutant display dramaticalterations in their actin cytoskeleton architecture that rely on the T6SS, which isresponsible for the inactivation of multiple Rho-family GTPases by an unknownmechanism. We employed a strategy to standardize the bacterial infection ofmacrophages and densitometrically quantify the T6SS-associated cellular phenotype,which allowed us to characterize the phenotype of systematic deletions of each genewithin the T6SS cluster and ten vgrG encoding genes in K56-2 ΔatsR. None of thegenes from the T6SS core cluster and the individual vgrGs were directly responsiblefor the cytoskeletal changes in infected cells. However, a mutant strain with all vgrGgenes deleted was unable to cause macrophage alterations. Despite not being able toidentify a specific effector protein responsible for the cytoskeletal defects inmacrophages, our strategy resulted in the identification of the critical core componentsand accessory proteins of the T6SS assembly machinery and provides a screeningmethod to detect T6SS effectors targeting the actin cytoskeleton in macrophages byrandom mutagenesis.
Resumo:
The speed control system for a concept for cost effective drives with high precision is presented. The drive concept consists of two parallel working drives. The concept is an alternative to direct drives. One big advantage is the use of standard gear boxes with economical components. This paper deals with the control of the drive system consisting of two parts: one drive produces the power for the machine, another drive makes the motion precice and dynamic. Both drives are combined to one double drive by a control system. The drive system is usefull for printing machines and other machines with high power consumption at a nearly constant speed and high accuracy requirements. The calculation for a drive system with 37 kW shows, that the control drive has to supply only about 20 % of the total torque and power needed to compensate the errors of the power drive. The stability of the system is shown by a simulation of the double drive.
Resumo:
The speed control system for a concept for cost effective drives with high precision is presented. The drive concept consists of two parallel working drives. The concept is an alternative to direct drives. One big advantage is the use of standard gear boxes with economical components. This paper deals with the control of the drive system consisting of two parts: one drive produces the power for the machine, another drive makes the motion precice and dynamic. Both drives are combined to one double drive by a control system. The drive system is usefull for printing machines and other machines with high power consumption at a nearly constant speed and high accuracy requirements. The calculation for a drive system with 37 kW shows, that the control drive has to supply only about 20 % of the total torque and power needed to compensate the errors of the power drive. The stability of the system is shown by a simulation of the double drive.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica