982 resultados para Population biology
Resumo:
La biologie de la conservation est communément associée à la protection de petites populations menacées d?extinction. Pourtant, il peut également être nécessaire de soumettre à gestion des populations surabondantes ou susceptibles d?une trop grande expansion, dans le but de prévenir les effets néfastes de la surpopulation. Du fait des différences tant quantitatives que qualitatives entre protection des petites populations et contrôle des grandes, il est nécessaire de disposer de modèles et de méthodes distinctes. L?objectif de ce travail a été de développer des modèles prédictifs de la dynamique des grandes populations, ainsi que des logiciels permettant de calculer les paramètres de ces modèles et de tester des scénarios de gestion. Le cas du Bouquetin des Alpes (Capra ibex ibex) - en forte expansion en Suisse depuis sa réintroduction au début du XXème siècle - servit d?exemple. Cette tâche fut accomplie en trois étapes : En premier lieu, un modèle de dynamique locale, spécifique au Bouquetin, fut développé : le modèle sous-jacent - structuré en classes d?âge et de sexe - est basé sur une matrice de Leslie à laquelle ont été ajoutées la densité-dépendance, la stochasticité environnementale et la chasse de régulation. Ce modèle fut implémenté dans un logiciel d?aide à la gestion - nommé SIM-Ibex - permettant la maintenance de données de recensements, l?estimation automatisée des paramètres, ainsi que l?ajustement et la simulation de stratégies de régulation. Mais la dynamique d?une population est influencée non seulement par des facteurs démographiques, mais aussi par la dispersion et la colonisation de nouveaux espaces. Il est donc nécessaire de pouvoir modéliser tant la qualité de l?habitat que les obstacles à la dispersion. Une collection de logiciels - nommée Biomapper - fut donc développée. Son module central est basé sur l?Analyse Factorielle de la Niche Ecologique (ENFA) dont le principe est de calculer des facteurs de marginalité et de spécialisation de la niche écologique à partir de prédicteurs environnementaux et de données d?observation de l?espèce. Tous les modules de Biomapper sont liés aux Systèmes d?Information Géographiques (SIG) ; ils couvrent toutes les opérations d?importation des données, préparation des prédicteurs, ENFA et calcul de la carte de qualité d?habitat, validation et traitement des résultats ; un module permet également de cartographier les barrières et les corridors de dispersion. Le domaine d?application de l?ENFA fut exploré par le biais d?une distribution d?espèce virtuelle. La comparaison à une méthode couramment utilisée pour construire des cartes de qualité d?habitat, le Modèle Linéaire Généralisé (GLM), montra qu?elle était particulièrement adaptée pour les espèces cryptiques ou en cours d?expansion. Les informations sur la démographie et le paysage furent finalement fusionnées en un modèle global. Une approche basée sur un automate cellulaire fut choisie, tant pour satisfaire aux contraintes du réalisme de la modélisation du paysage qu?à celles imposées par les grandes populations : la zone d?étude est modélisée par un pavage de cellules hexagonales, chacune caractérisée par des propriétés - une capacité de soutien et six taux d?imperméabilité quantifiant les échanges entre cellules adjacentes - et une variable, la densité de la population. Cette dernière varie en fonction de la reproduction et de la survie locale, ainsi que de la dispersion, sous l?influence de la densité-dépendance et de la stochasticité. Un logiciel - nommé HexaSpace - fut développé pour accomplir deux fonctions : 1° Calibrer l?automate sur la base de modèles de dynamique (par ex. calculés par SIM-Ibex) et d?une carte de qualité d?habitat (par ex. calculée par Biomapper). 2° Faire tourner des simulations. Il permet d?étudier l?expansion d?une espèce envahisseuse dans un paysage complexe composé de zones de qualité diverses et comportant des obstacles à la dispersion. Ce modèle fut appliqué à l?histoire de la réintroduction du Bouquetin dans les Alpes bernoises (Suisse). SIM-Ibex est actuellement utilisé par les gestionnaires de la faune et par les inspecteurs du gouvernement pour préparer et contrôler les plans de tir. Biomapper a été appliqué à plusieurs espèces (tant végétales qu?animales) à travers le Monde. De même, même si HexaSpace fut initialement conçu pour des espèces animales terrestres, il pourrait aisément être étndu à la propagation de plantes ou à la dispersion d?animaux volants. Ces logiciels étant conçus pour, à partir de données brutes, construire un modèle réaliste complexe, et du fait qu?ils sont dotés d?une interface d?utilisation intuitive, ils sont susceptibles de nombreuses applications en biologie de la conservation. En outre, ces approches peuvent également s?appliquer à des questions théoriques dans les domaines de l?écologie des populations et du paysage.<br/><br/>Conservation biology is commonly associated to small and endangered population protection. Nevertheless, large or potentially large populations may also need human management to prevent negative effects of overpopulation. As there are both qualitative and quantitative differences between small population protection and large population controlling, distinct methods and models are needed. The aim of this work was to develop theoretical models to predict large population dynamics, as well as computer tools to assess the parameters of these models and to test management scenarios. The alpine Ibex (Capra ibex ibex) - which experienced a spectacular increase since its reintroduction in Switzerland at the beginning of the 20th century - was used as paradigm species. This task was achieved in three steps: A local population dynamics model was first developed specifically for Ibex: the underlying age- and sex-structured model is based on a Leslie matrix approach with addition of density-dependence, environmental stochasticity and culling. This model was implemented into a management-support software - named SIM-Ibex - allowing census data maintenance, parameter automated assessment and culling strategies tuning and simulating. However population dynamics is driven not only by demographic factors, but also by dispersal and colonisation of new areas. Habitat suitability and obstacles modelling had therefore to be addressed. Thus, a software package - named Biomapper - was developed. Its central module is based on the Ecological Niche Factor Analysis (ENFA) whose principle is to compute niche marginality and specialisation factors from a set of environmental predictors and species presence data. All Biomapper modules are linked to Geographic Information Systems (GIS); they cover all operations of data importation, predictor preparation, ENFA and habitat suitability map computation, results validation and further processing; a module also allows mapping of dispersal barriers and corridors. ENFA application domain was then explored by means of a simulated species distribution. It was compared to a common habitat suitability assessing method, the Generalised Linear Model (GLM), and was proven better suited for spreading or cryptic species. Demography and landscape informations were finally merged into a global model. To cope with landscape realism and technical constraints of large population modelling, a cellular automaton approach was chosen: the study area is modelled by a lattice of hexagonal cells, each one characterised by a few fixed properties - a carrying capacity and six impermeability rates quantifying exchanges between adjacent cells - and one variable, population density. The later varies according to local reproduction/survival and dispersal dynamics, modified by density-dependence and stochasticity. A software - named HexaSpace - was developed, which achieves two functions: 1° Calibrating the automaton on the base of local population dynamics models (e.g., computed by SIM-Ibex) and a habitat suitability map (e.g. computed by Biomapper). 2° Running simulations. It allows studying the spreading of an invading species across a complex landscape made of variously suitable areas and dispersal barriers. This model was applied to the history of Ibex reintroduction in Bernese Alps (Switzerland). SIM-Ibex is now used by governmental wildlife managers to prepare and verify culling plans. Biomapper has been applied to several species (both plants and animals) all around the World. In the same way, whilst HexaSpace was originally designed for terrestrial animal species, it could be easily extended to model plant propagation or flying animals dispersal. As these softwares were designed to proceed from low-level data to build a complex realistic model and as they benefit from an intuitive user-interface, they may have many conservation applications. Moreover, theoretical questions in the fields of population and landscape ecology might also be addressed by these approaches.
Resumo:
BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and a leading cause of death in younger women. METHODS: We analysed incidence, mortality and relative survival (RS) in women with BC aged 20-49 years at diagnosis, between 1996 and 2009 in Switzerland. Trends are reported as estimated annual percentage changes (EAPC). RESULTS: Our findings confirm a slight increase in the incidence of BC in younger Swiss women during the period 1996-2009. The increase was largest in women aged 20-39 years (EAPC 1.8%). Mortality decreased in both age groups with similar EAPCs. Survival was lowest among women 20-39 years (10-year RS 73.4%). We observed no notable differences in stage of disease at diagnosis that might explain these differences. CONCLUSIONS: The increased incidence and lower survival in younger women diagnosed with BC in Switzerland indicates possible differences in risk factors, tumour biology and treatment characteristics that require additional examination.
Resumo:
In this study, the population structure of the white grunt (Haemulon plumieri) from the northern coast of the Yucatan Peninsula was determined through an otolith shape analysis based on the samples collected in three locations: Celestún (N 20°49",W 90°25"), Dzilam (N 21°23", W 88°54") and Cancún (N 21°21",W 86°52"). The otolith outline was based on the elliptic Fourier descriptors, which indicated that the H. plumieri population in the northern coast of the Yucatan Peninsula is composed of three geographically delimited units (Celestún, Dzilam, and Cancún). Significant differences were observed in mean otolith shapes among all samples (PERMANOVA; F2, 99 = 11.20, P = 0.0002), and the subsequent pairwise comparisons showed that all samples were significantly differently from each other. Samples do not belong to a unique white grunt population, and results suggest that they might represent a structured population along the northern coast of the Yucatan Peninsula
Resumo:
Tolype innocens (Burmeister, 1878) is reported for the first time damaging blueberry (Vaccinium ashei) plants in Brazil having the caterpillars feeding on leaves and new shoots. T. innocens biology was studied on blueberry leaves in laboratory conditions and then a fertility life table was elaborated. Developmental time and viability of egg, larval and pupal stages and egg-adult period were 15.0 and 35.3, 33.3 and 84.5, 20.6 and 100, and 69.2 days and 45%, respectively. Average pupal weight was 0.840g for the females and 0.580g for the males. The sex ratio was 0.5. Pre-oviposition and oviposition time lasted 6.34 and 12.1 days, respectively. Mean fecundity was 251 eggs per female. Eggs were laid either individually or in masses. Longevity was 19.0 and 20.0 days for males and females, respectively. T. innocens population increased 47 times per generation, with a mean generation time of 77 days, and a finite rate of increase of 1.02. This data on biological parameters will be useful for establishing control strategies.
Resumo:
Antisocial and criminal behaviors are multifactorial traits whose interpretation relies on multiple disciplines. Since these interpretations may have social, moral and legal implications, a constant review of the evidence is necessary before any scientific claim is considered as truth. A recent study proposed that men with wider faces relative to facial height (fWHR) are more likely to develop unethical behaviour mediated by a psychological sense of power. This research was based on reports suggesting that sexual dimorphism and selection would be responsible for a correlation between fWHR and aggression. Here we show that 4,960 individuals from 94 modern human populations belonging to a vast array of genetic and cultural contexts do not display significant amounts of fWHR sexual dimorphism. Further analyses using populations with associated ethnographical records as well as samples of male prisoners of the Mexico City Federal Penitentiary condemned by crimes of variable level of inter-personal aggression (homicide, robbery, and minor faults) did not show significant evidence, suggesting that populations/individuals with higher levels of bellicosity, aggressive behaviour, or power-mediated behaviour display greater fWHR. Finally, a regression analysis of fWHR on individual"s fitness showed no significant correlation between this facial trait and reproductive success. Overall, our results suggest that facial attributes are poor predictors of aggressive behaviour, or at least, that sexual selection was weak enough to leave a signal on patterns of between- and within-sex and population facial variation.
Resumo:
The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists.
Resumo:
Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.
Resumo:
While ecological effects on short-term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life-history trait). These results constitute the first solid link between ecological change and long-term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.
Resumo:
BACKGROUND: Many species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation. RESULTS: We tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages. CONCLUSIONS: Taken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
Jacaranda copaia (Aubl.) D. Don is a pioneer tree widespread in the Brazilian Amazon, usually found colonizing forest gaps and altered areas, and the forest fragment edges. This study investigated aspects of the floral biology, breeding system and pollinators of J. copaia trees. Flowering lasts from August to November, during the low rainfall period extending up to four weeks per tree and 3-4 months for the population as a whole, characterizing a cornucopia flowering pattern. The fruit set ends in the beginning of the rainy season, with wind dispersed winged seeds. Fruit set from open pollination was 1.06% (n = 6,932). Hand pollination using self-pollen (n = 2,099) did not set fruits. Cross-pollination resulted in 6.54% fruit set (n = 2,524), representing six times more than the natural pollination rate (1.06%, n = 6,932). Flowers excluded from insect visitation (automatic self-pollination) did not set fruits (n = 5,372). Pollen tube growth down to ovary was detected under fluorescence microcoscopy in cross-pollinated and selfed pistils. The species is an obligate allogamous plant, with late-acting self-incompatibility system. Approximately 40 species of native bees visited the flowers, but the main pollinators were medium-sized solitary bees as Euglossa and Centris species due to the compatibility between their body sizes with the corolla tube, direct contact with the reproductive structures and high frequency of visits.
Resumo:
Flavobacterium psychrophilum is the etiological agent of bacterial cold-water disease (BCWD) causing high fish mortalities and significant economic losses to the freshwater salmonid aquaculture industry around the world. Today BCWD outbreaks are mainly treated with environmentally hazardous antimicrobial agents and alternative preventative measures are urgently needed in order to ensure the well-being of animals and the sustainability of aquaculture. The diversity of pathogenic bacteria challenges the development of universal control strategies and in many cases the pathogen population structure, i.e. the total genetic diversity of the species must be taken into account. This work integrates the tools of modern molecular biology and conventional phenotypic microbiology to gain knowledge about the diversity and population structure of F. psychrophilum. The present work includes genetic characterization of a large collection of isolates collected from diverse origins and years, from aquaculture in a whole region including different countries, and provides the first international validation of a universal multilocus sequence typing (MLST) approach for unambiguous genetic typing of F. psychrophilum. Population structure analyses showed that the global F. psychrophilum population is subdivided into pathogenic species-specific clones, of which one particular genetic lineage, clonal complex CC-ST2, has been responsible for the majority of BCWD outbreaks in rainbow trout (Oncorhynchus mykiss) in European aquaculture facilities over several decades. Genotypic and phenotypic population heterogeneity affecting antimicrobial resistance in F. psychrophilum within BCWD outbreaks was discovered. Specific genotypes were associated with severe infections in farmed rainbow trout and Atlantic salmon (Salmo salar), and in addition to high adherence, antimicrobial resistance was strongly associated with outbreak strains. The study brought additional support for the hypothesis of an epidemic F. psychrophilum population structure, where recombination is an important force for the generation and maintenance of genetic diversity, and a significant contribution towards mapping the genetic diversity of this important fish pathogen. Evidence indicating dissemination of virulent strains with commercial movement of fish and fish products was strengthened.
Resumo:
There are more than 7000 languages in the world, and many of these have emerged through linguistic divergence. While questions related to the drivers of linguistic diversity have been studied before, including studies with quantitative methods, there is no consensus as to which factors drive linguistic divergence, and how. In the thesis, I have studied linguistic divergence with a multidisciplinary approach, applying the framework and quantitative methods of evolutionary biology to language data. With quantitative methods, large datasets may be analyzed objectively, while approaches from evolutionary biology make it possible to revisit old questions (related to, for example, the shape of the phylogeny) with new methods, and adopt novel perspectives to pose novel questions. My chief focus was on the effects exerted on the speakers of a language by environmental and cultural factors. My approach was thus an ecological one, in the sense that I was interested in how the local environment affects humans and whether this human-environment connection plays a possible role in the divergence process. I studied this question in relation to the Uralic language family and to the dialects of Finnish, thus covering two different levels of divergence. However, as the Uralic languages have not previously been studied using quantitative phylogenetic methods, nor have population genetic methods been previously applied to any dialect data, I first evaluated the applicability of these biological methods to language data. I found the biological methodology to be applicable to language data, as my results were rather similar to traditional views as to both the shape of the Uralic phylogeny and the division of Finnish dialects. I also found environmental conditions, or changes in them, to be plausible inducers of linguistic divergence: whether in the first steps in the divergence process, i.e. dialect divergence, or on a large scale with the entire language family. My findings concerning Finnish dialects led me to conclude that the functional connection between linguistic divergence and environmental conditions may arise through human cultural adaptation to varying environmental conditions. This is also one possible explanation on the scale of the Uralic language family as a whole. The results of the thesis bring insights on several different issues in both a local and a global context. First, they shed light on the emergence of the Finnish dialects. If the approach used in the thesis is applied to the dialects of other languages, broader generalizations may be drawn as to the inducers of linguistic divergence. This again brings us closer to understanding the global patterns of linguistic diversity. Secondly, the quantitative phylogeny of the Uralic languages, with estimated times of language divergences, yields another hypothesis as to the shape and age of the language family tree. In addition, the Uralic languages can now be added to the growing list of language families studied with quantitative methods. This will allow broader inferences as to global patterns of language evolution, and more language families can be included in constructing the tree of the world’s languages. Studying history through language, however, is only one way to illuminate the human past. Therefore, thirdly, the findings of the thesis, when combined with studies of other language families, and those for example in genetics and archaeology, bring us again closer to an understanding of human history.
Resumo:
One of the most common bee genera in the Niagara Region, the genus Ceratina (Hymenoptera: Apidae) is composed of four species, C. dupla, C. calcarata, the very rare C. strenua, and a previously unknown species provisionally named C. near dupla. The primary goal of this thesis was to investigate how these closely related species coexist with one another in the Niagara ~ee community. The first necessary step was to describe and compare the nesting biologies and life histories of the three most common species, C. dupla, C. calcarata and the new C. near dupla, which was conducted in 2008 via nest collections and pan trapping. Ceratina dupla and C. calcarata were common, each comprising 49% of the population, while C. near dupla was rare, comprising only 2% of the population. Ceratina dupla and C. near dupla both nested more commonly in teasel (Dipsacus sp.) in the sun, occasionally in raspberry (Rubus sp.) in the shade, and never in shady sumac (Rhus sp.), while C. calcarata nested most commonly in raspberry and sumac (shaded) and occasionally in teasel (sunny). Ceratina near dupla differed from both C. dupla and C. calcarata in that it appeared to be partially bivoltine, with some females founding nests very early and then again very late in the season. To examine the interactions and possible competition for nests that may be taking place between C. dupla and C. calcarata, a nest choice experiment was conducted in 2009. This experiment allowed both species to choose among twigs from all three substrates in the sun and in the shade. I then compared the results from 2008 (where bees chose from what was available), to where they nested when given all options (2009 experiment). Both C. dupla and C. calcarata had the same preferences for microhabitat and nest substrate in 2009, that being raspberry and sumac twigs in the sun. As that microhabitat and nest substrate combination is extremely rare in nature, both species must make a choice. In nature Ceratina dupla nests more often in the preferred microhabitat (sun), while C. calcarata nests in the preferred substrate (raspberry). Nesting in the shade also leads to smaller clutch sizes, higher parasitism and lower numbers of live brood in C. calcarata, suggesting that C. dupla may be outcompeting C. calcarata for the sunny nesting sites. The development and host preferences of Ceratina parasitoids were also examined. Ceratina species in Niagara were parasitized by no less than eight species of arthropod. Six of these were wasps from the superfamily Chalcidoidea (Hymenoptera), one was a wasp from the family Ichneumonidae (Hymenoptera) and one was a physogastric mite from the family Pyemotidae (Acari). Parasites shared a wide range of developmental strategies, from ichneumonid larvae that needed to consume multiple Ceratina immatures to complete development, to the species from the Eulophidae (Baryscapus) and Encyrtidae (Coelopencyrtus), in which multiple individuals completed development inside a single Ceratina host. Biological data on parasitoids is scarce in the scientific literature, and this Chapter documents these interactions for future research.
Resumo:
Les ataxies autosomiques récessives sont un groupe de troubles neurologiques hétérogènes caractérisés par une incoordination brute des mouvements musculaires impliquant le dysfonctionnement nerveux du cervelet qui coordonne le mouvement. Plusieurs formes héréditaires ont été décrites dont la plus connue : l’ataxie de Friedriech. Dans cette thèse nous rapportons l'identification et la caractérisation d’une nouvelle forme dans la population québécoise. L’ataxie récessive spastique avec leucoencéphalopathie (ARSAL; aussi connue comme l’ataxie autosomique récessive spastique de type 3 (SPAX3); OMIM 611390) est la deuxième ataxie spastique décrite dans la population canadienne française. En effet, près de 50 % de nos cas sont originaires de la région de Portneuf. En 2006, nous avons décrit les caractéristiques cliniques de cette nouvelle forme d’ataxie. Un premier criblage du génome entier, constitué de plus de 500 marqueurs microsatellites, a permis la localisation du locus sur le chromosome 2q33-34. Suite au séquençage de plus de 37 gènes candidats et afin de rétrécir cet intervalle candidat, nous avons utilisé une micro-puce d’ADN constituée de marqueurs SNP «single nucleotide polymorphism» et nous avons identifié un deuxième intervalle candidat de 0.658Mb au locus 2q33 dans lequel se trouvent moins de 9 gènes. L’identification et la caractérisation de ces mutations a nécessité l’utilisation de diverses technologies de pointe. Trois mutations (une délétion et deux réarrangements complexes) dans le gène mitochondrial tRNA-synthetase (MARS2) ont été identifiées dans notre cohorte. Nous émettons l’hypothèse que la nature des mutations complexes est responsable d’un dérèglement de la transcription du gène, ce qui a un impact néfaste sur la fonction mitochondriale et le tissu neuronal.