866 resultados para Polymer-matrix composites


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//l//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, lambda is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between lambda and microstructure parameters of composites is obtained. By using lambda, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The localized shear deformation in the 2024 and 2124 Al matrix composites reinforced with SiC particles was investigated with a split Hopkinson pressure bar (SHPB) at a strain rate of about 2.0x10(3) s(-1). The results showed that the occurrence of localized shear deformation is sensitive to the size of SiC particles. It was found that the critical strain, at which the shear localization occurs, strongly depends on the size and volume fraction of SiC particles. The smaller the particle size, the lower the critical strain required for the shear localization. TEM examinations revealed that Al/SiCp interfaces are the main sources of dislocations. The dislocation density near the interface was found to be high and it decreases with the distance from the particles. The Al matrix in shear bands was highly deformed and severely elongated at low angle boundaries. The Al/SiCp interfaces, particularly the sharp corners of SiC particles, provide the sites for microcrack initiation. Eventual fracture is caused by the growth and coalescence of microcracks along the shear bands. It is proposed that the distortion free equiaxed grains with low dislocation density observed in the center of shear band result from recrystallization during dynamic deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bulk metallic glasses (BMGs) maybe be considered to share some of the same inherent trade-offs as engineering ceramics. While BMGs typically exhibit high yield strengths, and while some have surprising fracture toughness, they exhibiting little to no tensile ductility, and fail in a brittle manner under uniaxial loading. Speaking broadly, there are two complimentary approaches to improving on these shortcomings: 1) create bulk metallic glass matrix composites (BMGMCs) and 2) improve the properties of a monolithic BMG. The structure of this thesis mirrors this division, with chapters 2-7 focusing on creating and processing amorphous metal matrix composites, and chapter 8 focusing on modifying the properties of a monolithic BGM by altering its configurational state through irradiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os materiais poliméricos tem sido uma das causas dos problemas ambientais discutidos em todo mundo nos últimos tempos. Como uma das soluções para esse problema, estão os polímeros biodegradáveis que são materiais que se degradam pela ação de microorganismos. Uma Indústria sediada no Brasil lançou recentemente um poliéster biodegradável que surge boa alternativa para o crescimento no mercado dos polímeros biodegradáveis, principalmente por possuir em sua composição matéria prima de fonte renovável. Neste trabalho foram preparados compósitos com matriz de poliéster biodegradável e fibra de coco verde com e sem modificação química por acetilação em misturador interno Haake. Foi estudada a biodegradabilidade em solo simulado do polímero puro e de seus compósitos e foram avaliadas as propriedades térmicas, morfológicas e mecânicas do polímero puro e de alguns de seus compósitos. O teste de biodegradabilidade foi feito pelo enterro das amostras em solo simulado por períodos distintos, variando de duas a dezessete semanas, seguindo a Norma ASTM G 160 03. Após cada período de teste, as amostras foram retiradas do solo e analisadas por microscopia ótica (MO), microscopia eletrônica de varredura (MEV), análise termogravimétrica (TGA), calorimetria diferencial de varredura (DSC), espectroscopia na região do infravermelho (FTIR) e análise mecânica de tração. Os resultados obtidos indicaram que tanto o polímero puro quanto os seus compósitos sofreram biodegradação, a presença da fibra apenas atrasa o processo de biodegradação, as fibras de coco tiveram uma boa afinidade com a matriz polimérica, a incorporação de 5% fibra de coco na matriz torna o compósito mais rígido e a incorporação da fibra e o processo de biodegradação alteram as características da fase cristalina no material polimérico.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho, foram utilizadas três resinas reticuladas comerciais de troca iônica e caráter ácido à base de estireno e divinilbenzeno: AmberliteGT73 da Rohm and Haas Co. com grupo tiol, Lewatit VPOC1800 da Bayer Co. com grupo sulfônico e Amberlyst 15WET da Rohm and Haas Co. também com grupo sulfônico. As citadas resinas comerciais foram escolhidas por apresentarem grande capacidade de troca iônica, estabilidade e grupos funcionais de interesse para a introdução de íons Ag+. As resinas foram tratadas com ácido clorídrico para garantir as formas ácidas de seus grupos funcionais e em seguida a redução dos íons Ag+, provenientes de solução de nitrato de prata, foi realizada in situ pela hidroxilamina em presença de solução protetora de colóide composta por 2-hidróxi-etil-celulose e gelatina 1:1. Alguns parâmetros foram modificados durante a redução dos íons Ag+ a Ag0, como por exemplo, o tempo de adição da solução redutora de hidroxilamina, a solução utilizada para controle do pH, e condições do repouso após o controle do pH. Após a incorporação das nanopartículas de prata, tanto as resinas comerciais quanto o produto final foram caracterizados por titulometria, fluorescência de raios-x, análise termogravimétrica, análise elementar, grau de inchamento, difração de raios-x, microscopias ótica e eletrônica. A avaliação da atividade biocida foi realizada através do método da contagem em placas utilizando-se uma cepa de Escherichia Coli ATCC25922TM em concentrações de 103 a 107 células/mL. Todos os compósitos obtidos mostraram atividade bactericida significante, sendo que foi possível perceber que a ação bactericida dos compósitos está relacionada com a presença de prata na forma metálica e a características como tamanho, formato e dispersão das partículas na matriz polimérica. Para efeito de comparação, foram realizados ensaios bactericidas com os copolímeros de partida e assim foi comprovado que a ação bactericida pôde ser atribuída somente às nanopartículas de prata

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel multifunctional inorganic-organic photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazolcarbazolyl-CdS nanocomposites with different molar ratios of US to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl (PVNPAK) were synthesized via a postazo-coupling reaction and chemically hybridized approach, respectively. The nanocomposites are highly soluble and could be obtained as film-forming materials with appreciably high molecular weights and low glass transition temperature (T,) due to the flexible spacers. The PVNPAK matrix possesses a highest-occupied molecular orbital value of about -5.36 eV determined from cyclic voltammetry. Second harmonic generation (SHG) could be observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-order nonlinear optical susceptibility is obtained. The US particles as photosensitizers had a nanoscale size in PVNPAK adopting transmission electron microscopy. The improvement of interface quality between US and polymer matrix is responsible for efficient photoinduced charge generation efficiency in the nanocomposites. An asymmetric optical energy exchange between two beams on the polymer composites PVNPAK-CdS/ECZ has been found even without an external field in two-beam coupling (TBC) experiment, and the TBC gain and diffraction efficiency of 14.26 cm(-1) and 3.4% for PVNPAK-5-CdS/ECZ, 16.43 cm(-1) and 4.4% for PVNPAK-15-CdS/ECZ were measured at a 647.1 nm wavelength, respectively.