935 resultados para Polygonal faults


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el proceso de inversión de la función de directividad para la obtención de la longitud de falla y velocidad de mptura, en el caso de terremotos de magnitud media, es muy dificil obtener ambos parámetros independientemente y deben hacerse hipótesis sobre uno de los dos parámetros. Proponemos una solución a este problema mediante un proceso iterativo, que iniciamos con un valor hipotético de la velocidad de ruptura. El resultado final resulta ser independiente del valor de partida. Mediante este proceso hemos obtenido la longitud de falla y velocidad de ruptura de dos terremotos, el del 18-nov-1970, ocurrido en la Dorsal Oriental del Pacifico, y el del 4-jul-1966, ocurrido en la Dorsal Centro-Atlántica. Para el sismo del 18-nov-1970 los valores obtenidos en la b = (18 4- 1) km v = (2.3 f 0.1) kmls y para el sismo del 4-jul-1966 b = (19 f 2) km, v = (2.1 i 0.1) kmls. Las desviaciones tipicas de estos parámetros, del orden del 5-10 %, son inferiores a las obtenidas en trabajos previos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantan that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a similar to 50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a similar to 20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantan and illustrate the potential of ERT surveying for paleoseismic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultramafic rocks, mainly serpentinized peridotites of mantle origin, are mostly associated with the ophiolites of Mesozoic age that occur in belts along three of the margins of the Caribbean plate. The most extensive exposures are in Cuba. The ultramafic-mafic association (ophiolites) were formed and emplaced in several different tectonic environments. Mineralogical studies of the ultramafic rocks and the chemistry of the associated mafic rocks indicate that most of the ultramafic-mafic associations in both the northern and southern margins of the plate were formed in arc-related environments. There is little mantle peridotite exposed in the ophiolitic associations of the west coast of Central America, in the south Caribbean in Curacao and in the Andean belts in Colombia. In these occurrences the chemistry and age of the mafic rocks indicates that this association is mainly part of the 89 Ma Caribbean plateau province. The age of the mantle peridotites and associated ophiolites is probably mainly late Jurassic or Early Cretaceous. Emplacement of the ophiolites possibly began in the Early Cretaceous in Hispaniola and Puerto Rico, but most emplacement took place in the Late Cretaceous to Eocene (e.g. Cuba). Along the northern South America plate margin, in the Caribbean mountain belt, emplacement was by major thrusting and probably was not completed until the Oligocene or even the early Miocene. Caribbean mantle peridotites, before serpentinization, were mainly harzburgites, but dunites and lherzolites are also present. In detail, the mineralogical and chemical composition varies even within one ultramafic body, reflecting melting processes and peridotite/melt interaction in the upper mantle. At least for the northern Caribbean, uplift (postemplacement tectonics) exposed the ultramafic massifs as a land surface to effective laterization in the beginning of the Miocene. Tectonic factors, determining the uplift, exposing the peridotites to weathering varied. In the northern Caribbean, in Guatemala, Jamaica, and Hispaniola, uplift occurred as a result of transpresional movement along pre-existing major faults. In Cuba, uplift occurred on a regional scale, determined by isostatic adjustment. In the south Caribbean, uplift of the Cordillera de la Costa and Serrania del Interior exposing the peridotites, also appears to be related to strike-slip movement along the El Pilar fault system. In the Caribbean, Ni-laterite deposits are currently being mined in the central Dominican Republic, eastern Cuba, northern Venezuela and northwest Colombia. Although apparently formed over ultramafic rocks of similar composition and under similar climatic conditions, the composition of the lateritic soils varies. Factors that probably determined these differences in laterite composition are geomorphology, topography, drainage and tectonics. According to the mineralogy of principal ore-bearing phases, Dominican Ni-laterite deposits are classified as the hydrous silicate-type. The main Ni-bearing minerals are hydrated Mg-Ni silicates (serpentine and ¿garnierite¿) occurring deeper in the profile (saprolite horizon). In contrast, in the deposits of eastern Cuba, the Ni and Cooccurs mainly in the limonite zone composed of Fe hydroxides and oxides as the dominant mineralogy in the upper part of the profile, and are classified as the oxide-type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New stratigraphic data along a profile from the Helvetic Gotthard Massif to the remnants of the North Penninic Basin in eastern Ticino and Graubunden are presented. The stratigraphic record together with existing geochemical and structural data, motivate a new interpretation of the fossil European distal margin. We introduce a new group of Triassic facies, the North-Penninic-Triassic (NPT), which is characterised by the Ladinian "dolomie bicolori". The NPT was located in-between the Briançonnais carbonate platform and the Helvetic lands. The observed horizontal transition, coupled with the stratigraphic superposition of an Helvetic Liassic on a Briaçonnais Triassic in the Luzzone-Terri nappe, links, prior to Jurassic rifting, the Briançonnais paleogeographic domain at the Helvetic Margin, south of the Gotthard. Our observations suggest that the Jurassic rifting separated the Briançonnais domain from the Helvetic margin by complex and protracted extension. The syn-rift stratigraphic record in the Adula nappe and surroundings suggests the presence of a diffuse rising area with only moderately subsiding basins above a thinned continental and proto-oceanic crust. Strong subsidence occurred in a second phase following protracted extension and the resulting delamination of the rising area. The stratigraphic coherency in the Adula's Mesozoic questions the idea of a lithospheric mélange in the eclogitic Adula nappe, which is more likely to be a coherent alpine tectonic unit. The structural and stratigraphic observations in the Piz Terri-Lunschania zone suggest the activity of syn-rift detachments. During the alpine collision these faults are reactivated (and inverted) and played a major role in allowing the Adula subduction, the "Penninic Thrust" above it and in creating the structural complexity of the Central Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quartz-carbonate-chlorite veins were studied in borehole samples of the RWTH-1 well in Aachen. Veins formed in Devonian rocks in the footwall of the Aachen thrust during Variscan deformation and associated fluid flow. Primary fluid inclusions indicate subsolvus unmixing of a homogenous H(2)O-CO(2)-CH(4)-(N(2))-Na-(K)-Cl fluid into a H(2)O-Na-(K)-Cl solution and a vapour-rich CO(2)-(H(2)O, CH(4), N(2)) fluid. The aqueous end-member composition resembles that of metamorphic fluids of the Variscan front zone with salinities ranging from 4 to 7% NaCl equiv. and maximum homogenisation temperatures of close to 400A degrees C. Pressure estimates indicate a burial depth between 4,500 and 8,000 m at geothermal gradients between 50 and 75A degrees C/26 MPa, but pressure decrease to sublithostatic conditions is also indicated, probably as a consequence of fracture opening during episodic seismic activity. A second fluid system, mainly preserved in pseudo-secondary and secondary fluid inclusions, is characterised by fluid temperatures between 200 and 250A degrees C and salinities of < 5% NaCl equiv. Bulk stable isotope analyses of fluids released from vein quartz, calcite, and dolomite by decrepitation yielded delta D(H2O) values from -89 to -113 aEuro degrees, delta(13)C(CH4) from -26.9 to -28.9aEuro degrees (VPDB) and delta(13)C(CO2) from -12.8 to -23.3aEuro degrees (VPDB). The low delta D and delta(13)C range of the fluids is considered to be due to interaction with cracked hydrocarbons. The second fluid influx caused partial isotope exchange and disequilibrium. It is envisaged that an initial short lived flux of hot metamorphic fluids expelled from the epizonal metamorphic domains of the Stavelot-Venn massif. The metamorphic fluid was focused along major thrust faults of the Variscan front zone such as the Aachen thrust. A second fluid influx was introduced from formation waters in the footwall of the Aachen thrust as a consequence of progressive deformation. Mixing of the cooler and lower salinity formation water with the hot metamorphic fluid during episodic fluid trapping resulted in an evolving range of physicochemical fluid inclusion characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Upper Cretaceous volcanic succession of Hannah Point is the best exposure of the Antarctic Peninsula Volcanic Group on L ivingston Island. The aim of the present paper is to contribute to the characterisation of the stratigr a p hy and petrogr a p hy of this little studied succession, and briefly discuss some aspects of the eru p t ive style of its volcanism. The succession is about 470 m thick and is here subdivided into five lithostratigraphic units (A to E from base to top). Unit A, approximately 120 m thick, is mainly composed of polymict clast-supported volcaniclastic breccias and also includes a dacitic lava laye r. Interstratified in the breccias of this unit, there is a thin laminated devitrified layer which shows some degree of welding. Unit B, approx imately 70 m thick, is almost entirely composed of volcaniclastic breccias, and includes a volcaniclastic conglomerate laye r. Breccias in this unit can be subdivided into two distinct types; polymict clast-supported breccias, and monomict matrix-supported breccias rich in juvenile components and displaying incipient welding. Unit C, about 65 m thick, is mainly composed of basaltic lavas, which are interlayered with minor vo lcaniclastic breccias. Unit D, approximately 65 m thick, is lithologically similar to unit B, composed of an alternation of polymict clasts upported breccias and matrix-supported breccias, and includes a volcaniclastic conglomerate laye r. Unit E, about 150 m thick, is mainly formed of thick andesitic lava layers. Minor basaltic dykes and a few normal faults cut the succession, and the contact betwe e n units A and B can be interpreted both as an unconformity or a fault. The matrix-supported breccias included in the succession of Hannah Point have high contents of juvenile components and incipient welding, which suggest that part of the succession is the result of pyroclastic fragmentation and emplacement from pyroclastic flows. In contrast, the polymict clast-supported breccias suggest reworking of previous deposits and deposition from cool mass flows. The lavas indicate eff u s ive volcanic eruptions, and the absence of features indicative of subaqueous volcanism suggests that at least these portions of the succession were emplaced in a subaerial environment .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metamorphism of the carbonate rocks of the SE Zanskar Tibetan zone has been studied by `'illite crystallinity'' and calcite-dolomite thermometry. The epizonal Zangla unit overlies the anchizonal Chumik unit. This discontinuous inverse zonation demonstrates a late to post-metamorphic thrust of the first unit over the second. The studied area underwent a complex tectonic history: - The tectonic units were stacked from the NE to the SW, generating recumbent folds, NE dipping thrusts and the regional metamorphism. The compressive movements were active under lower temperature conditions, resulting in late thrusts that disturbed the metamorphic zonation. The discontinuous inverse metamorphic zonation dates from this phase. - A NE vergent backfolding phase occurred at lower temperature conditions. It caused the uplift of more metamorphic levels. - A late extensional phase is revealed by the presence of NE dipping low angle normal faults, and a major high angle fault, the Sarchu fault. The low angle normal faults locally run along earlier thrusts (composite tectonic contacts). Their throw has been sufficient to reset a normal stratigraphic superposition (young layers overlying old ones), but insufficient to erase the inverse metamorphic relationship. However, the combined action of backfolding and normal faulting can locally lessen, or even cancel, the inverse metamorphic superposition. After deduction of the normal fault translation, the vertical component of the original thrust displacement through stratigraphy is 400 m, which is a value far too low to explain the temperature difference between the two units. The horizontal component of displacement is therefore far more important than the vertical one. The regional distribution of metamorphism within the Zangla unit points out to an anchizonal front and an epizonal inner part. This fact is in agreement with nappe tectonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Oligocene deposits of Montgat are integrated in a small outcrop made up of Cenozoic and Mesozoic rocks located in the Garraf-Montnegre horst, close to the major Barcelona fault. The Oligocene of Montgat consists of detrital sediments of continental origin mainly deposited in alluvial fan environments; these deposits are folded and affected by thrusts and strike-slip faults. They can be divided in two lithostratigraphic units separated by a minor southwest-directed thrust: (i) the Turó de Montgat Unit composed of litharenites and lithorudites with high contents of quartz, feldspar, plutonic and limestone rock fragments; and (ii) the Pla de la Concòrdia Unit composed of calcilitharenites and calcilithorudites with high contents of dolosparite and dolomicrite rock fragments. The petrological composition of both units indicates that sediments were derived from the erosion of Triassic (Buntsandstein, Muschelkalk and Keuper facies), Jurassic and Lower Cretaceous rocks (Barremian to Aptian in age). Stratigraphic and petrological data suggest that these units correspond to two coalescent alluvial fans with a source area located northwestwards in the adjoining Collserola and Montnegre inner areas. Micromammal fossils (Archaeomys sp.) found in a mudstone layer of the Pla de la Concòrdia Unit assign a Chattian age (Late Oligocene) to the studied materials. Thus, the Montgat deposits are the youngest dated deposits affected by the contractional deformation that led to the development of the Catalan Intraplate Chain. Taking into account that the oldest syn-rift deposits in the Catalan Coastal Ranges are Aquitanian in age, this allows to precise that the change from a compressive to an extensional regime in this area took place during latest Oligocene-earliest Aquitanian times. This age indicates that the onset of crustal extension related to the opening of the western Mediterranean Basin started in southern France during latest Eocene-early Oligocene and propagated southwestward, affecting the Catalan Coastal Ranges and the northeastern part of the Valencia trough during the latest Chattian-earliest Aquitanian times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and structural evolution of the jungrau syncline is described, based on excellent outcrops occurring in the lotschental, in the central alps of switzerland. the quality of the outcrops allows us to demonstrate that the external massifs of the swiss alps have developed due to internal folding. The jungfrau suncline, which separates the autochtonous gastern dome from the aar massif basement gneiss folds, is composed of slivers of basement rocks with their mesozoic sedimentary cover. in the inner faflertal, a side valley of the lotschental, the 200 m thick syncline cp, roses fpir imots, the gastern massif with a reduced mesozoic sedimentary cover in a normal stratigraphic succession, two units of overturned basement rocks with their mesozoic sedimentary cover, and the overturned lower limn of the tschingelhorn gneiss fold of the aar massif with lenses of its sedimentary cover. stratigraphy shows that the lower units, related to the gastern massis, are condensed and that the upper units, deposited farther away from a gastern paleo-high, form a more complete sequence, linked to the doldenhorn meso-cneozoic basin fill. the integration of these local observations with published regional data leads to the following model. on the northern margin of the doldenhorn hbasin, at the northern fringe of the alpine tethuys, the pre-triassic crystalline basement and its mesozoic sedimentary cover were folded by ductile deformation at temperatures above 300 degrees C and in the presence of high fluid pressures, as the helveti c and penninic nappes were overthrusted towards the northwest during the main alpine deformation phase, the visosity contrast between the basement gneisses and the sediments caused the formation of large basement anticlines and tight sedimentary sunclines (mullion-type structures). The edges of basement blocks bounded buy pre-cursor se-dipping normal faults at the northwestern border of the doldenhorn basin were deformed bu simple shear, creating overturned slices of crystalline rocks with their sedimentary cover in what now forms the hungfrau syncline. the localisation of ductile deformation in the vicinity of pre-existing se-dipping faults is thought to have been helped by the circulation of fluids along the faults; these fluids would have been released from the mesozoic sediments by metamorphic dehydration reactions accompanied by creep and dynamic recrystallisation of quartz at temperatures above 300 degrees C. Quantification of the deformation suggests an strain ellipsoid with a ratio (1 + e(1)/+ e(3)) of approximately 1000. The jungfrau suncline was deformed bu more brittle nw-directed shear creating well-developed shear band cleavages at a late stage, after cooling by uplift and erosion. It is suggested that the external massifs of the apls are basement gneiss folds created at temperatures of 300 degrees C by detachment through ductile deformation of the upper crust of the european plate as it was underthrusted below the adriatic plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In August 2008, reactivation of the Little Salmon Lake landslide occurred. During this event, hundreds of conical mounds of variable size and composition formed in the deposition zone. The characteristics of these landforms are described and a potential mechanism for their formation is proposed. A preliminary slope stability analysis of the 2007 Mount Steele rock and ice avalanche was also undertaken. The orientation of very high persistence (>20 m long) structural planes (e.g., faults, joints and bedding) within bedrock in the source zone was obtained using an airborne-LiDAR digital elevation model and the software COLTOP-3D. Using these discontinuity orientation measurements, kinematic, surface wedge and simple three-dimensional distinct element slope stability analyses were performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study investigates the possibility to incorporate fracture intensity and block geometry as spatially continuous parameters in GIS-based systems. For this purpose, a deterministic method has been implemented to estimate block size (Bloc3D) and joint frequency (COLTOP). In addition to measuring the block size, the Bloc3D Method provides a 3D representation of the shape of individual blocks. These two methods were applied using field measurements (joint set orientation and spacing) performed over a large field area, in the Swiss Alps. This area is characterized by a complex geology, a number of different rock masses and varying degrees of metamorphism. The spatial variability of the parameters was evaluated with regard to lithology and major faults. A model incorporating these measurements and observations into a GIS system to assess the risk associated with rock falls is proposed. The analysis concludes with a discussion on the feasibility of such an application in regularly and irregularly jointed rock masses, with persistent and impersistent discontinuities.