416 resultados para Polarizing microscopes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel optical setup for imaging through reflection holography with Bi12TiO20 (BTO) sillenite photorefractive crystals is proposed. Aiming a compact, robust and simple optical setup the lensless Denisiuk arrangement was chosen, using a He-Ne red laser as light source. In this setup the holographic medium is placed between the light source and the object. The beam impinging the crystal front face is the reference one, while the light scattered by the surface is the object beam in a holographic recording by diffusion. In order to allow the readout of the diffracted wave only and to keep the setup simplicity a polarizing beam splitter cube (PBS) was positioned at the BTO input. The reference beam is s-polarized (polarization direction perpendicular to the table top) and the crystal. 〈001〉-axis is rotated by an angle γ with respect to the input polarization in order to make the transmitted object beam and the diffracted beam to have orthogonal polarizations. While the transmitted wave is reflected by the PBS at a right angle, the diffracted wave carrying the holographic reconstruction of the object passes through the PBS, being collected by a positive lens in order to form the holographic image at a CCD camera. The holographic recording with the grating vector is parallel to the 〈100〉-axis. An expression for the diffracted wave intensity as a function of γ was derived, and this relation was experimentally investigated. © 2008 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.
Resumo:
Purpose: To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. Methods: One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab(US Patent). A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE<0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Results: Bio-Optics: sample size, 97 +/- 22 cells; RE, 6.52 +/- 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 162 +/- 34 cells. CSO: sample size, 110 +/- 20 cells; RE, 5.98 +/- 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 157 +/- 45 cells. Konan: sample size, 80 +/- 27 cells; RE, 10.6 +/- 3.67; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 336 +/- 131 cells. Topcon: sample size, 87 +/- 17 cells; RE, 10.1 +/- 2.52; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 382 +/- 159 cells. Conclusions: A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.
Resumo:
The aim of this study was to describe and illustrate the morphology of the spermatozoon of the Western Atlantic shrimp, Hippolyte obliquimanus. Individuals were sampled from Itagua Beach (Ubatuba, southern Brazil). The male reproductive system was dissected and morphological analysis was undertaken using a stereomicroscope, a light microscope, and transmission electron and scanning electron microscopes. When viewed from the nuclear or acrosomal poles, each spermatozoon has many translucent radiating arms (about 20) from a denser cell body, while laterally the cell body and arms resemble a "cnidarian medusa", with all the arms projecting away from the bell-like cell body. This sperm morphology is distinct from the "thumbtack"-shaped spermatozoa observed in the majority of carideans but has similarities to the spermatozoa of Rhynchocinetes spp. The morphology of sperm of several species of the genus Hippolyte resembles the spermatozoon of H. obliquimanus with the presence of posterior nuclear arms, but it is necessary to study other Hippolyte species to place these arms in the context of the genus.
Resumo:
Objectives: Because the mechanical behavior of the implant-abutment system is critical for the longevity of implant-supported reconstructions, this study evaluated the fatigue reliability of different implant-abutment systems used as single-unit crowns and their failure modes. Methods and Materials: Sixty-three Ti-6Al-4V implants were divided in 3 groups: Replace Select (RS); IC-IMP Osseotite; and Unitite were restored with their respective abutments. Anatomically correct central incisor metal crowns were cemented and subjected to separate single load to failure tests and step-stress accelerated life testing (n = 18). A master Weibull curve and reliability for a mission of 50,000 cycles at 200 N were calculated. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The load at failure mean values during step-stress accelerated life testing were 348.14 N for RS, 324.07 N for Osseotite, and 321.29 N for the Unitite systems. No differences in reliability levels were detected between systems, and only the RS system mechanical failures were shown to be accelerated by damage accumulation. Failure modes differed between systems. Conclusions: The 3 evaluated systems did not present significantly different reliability; however, failure modes were different. (Implant Dent 2012;21:67-71)
Resumo:
The innate and adaptive immune responses in neonates are usually functionally impaired when compared with their adult counterparts. The qualitative and quantitative differences in the neonatal immune response put them at risk for the development of bacterial and viral infections, resulting in increased mortality. Newborns often exhibit decreased production of Th1-polarizing cytokines and are biased toward Th2-type responses. Studies aimed at understanding the plasticity of the immune response in the neonatal and early infant periods or that seek to improve neonatal innate immune function with adjuvants or special formulations are crucial for preventing the infectious disease burden in this susceptible group. Considerable studies focused on identifying potential immunomodulatory therapies have been performed in murine models. This article highlights the strategies used in the emerging field of immunomodulation in bacterial and viral pathogens, focusing on preclinical studies carried out in animal models with particular emphasis on neonatal-specific immune deficits.
Resumo:
Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
Resumo:
Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.
Resumo:
This thesis is mainly about the search for exotic heavy particles -Intermediate Mass Magnetic Monopoles, Nuclearites and Q-balls with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m, Bolivia), establishing upper limits (90% CL) in the absence of candidates, which are among the best if not the only one for all three kind of particles. A preliminary study of the background induced by cosmic neutron in CR39 at the SLIM site, using Monte Carlo simulations. The measurement of the elemental abundance of the primary cosmic ray with the CAKE experiment on board of a stratospherical balloon; the charge distribution obtained spans in the range 5≤Z≤31. Both experiments were based on the use of plastic Nuclear Track Detectors, which records the passage of ionizing particles; by using some chemical reagents such passage can be make visible at optical microscopes.