932 resultados para Poisson Arrivals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulating passenger flows within airports is very important as it can provide an indication of queue lengths, bottlenecks, system capacity and overall level of service. To date, visual simulation tools such as agent based models have focused on processing formalities such as check-in, and not incorporate discretionary activities such as duty-free shopping. As airport retail contributes greatly to airport revenue generation, but also has potentially detrimental effects on facilitation efficiency benchmarks, this study developed a simplistic simulation model which captures common duty-free purchasing opportunities, as well as high-level behaviours of passengers. It is argued that such a model enables more realistic simulation of passenger facilitation, and provides a platform for simulating real-time revenue generation as well as more complex passenger behaviours within the airport. Simulations are conducted to verify the suitability of the model for inclusion in the international arrivals process for assessing passenger flow and infrastructure utilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Previous studies have found high temperatures increase the risk of mortality in summer. However, little is known about whether a sharp decrease or increase in temperature between neighbouring days has any effect on mortality. Method: Poisson regression models were used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. The temperature change was calculated as the current day’s mean temperature minus the previous day’s mean. Results: In Brisbane, a drop of more than 3 °C in temperature between days was associated with relative risks (RRs) of 1.157 (95% confidence interval (CI): 1.024, 1.307) for total non external mortality (NEM), 1.186 (95%CI: 1.002, 1.405) for NEM in females, and 1.442 (95%CI: 1.099, 1.892) for people aged 65–74 years. An increase of more than 3 °C was associated with RRs of 1.353 (95%CI: 1.033, 1.772) for cardiovascular mortality and 1.667 (95%CI: 1.146, 2.425) for people aged < 65 years. In Los Angeles, only a drop of more than 3 °C was significantly associated with RRs of 1.133 (95%CI: 1.053, 1.219) for total NEM, 1.252 (95%CI: 1.131, 1.386) for cardiovascular mortality, and 1.254 (95%CI: 1.135, 1.385) for people aged ≥75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. Conclusion : A significant change in temperature of more than 3 °C, whether positive or negative, has an adverse impact on mortality even after controlling for the current temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Apart from helmets, little is known about the effectiveness of motorcycle protective clothing in reducing injuries in crashes. The study aimed to quantify the association between usage of motorcycle clothing and injury in crashes. Methods and findings Cross-sectional analytic study. Crashed motorcyclists (n = 212, 71% of identified eligible cases) were recruited through hospitals and motorcycle repair services. Data was obtained through structured face-to-face interviews. The main outcome was hospitalization and motorcycle crash-related injury. Poisson regression was used to estimate relative risk (RR) and 95% confidence intervals for injury adjusting for potential confounders. Results Motorcyclists were significantly less likely to be admitted to hospital if they crashed wearing motorcycle jackets (RR = 0.79, 95% CI: 0.69–0.91), pants (RR = 0.49, 95% CI: 0.25–0.94), or gloves (RR = 0.41, 95% CI: 0.26–0.66). When garments included fitted body armour there was a significantly reduced risk of injury to the upper body (RR = 0.77, 95% CI: 0.66–0.89), hands and wrists (RR = 0.55, 95% CI: 0.38–0.81), legs (RR = 0.60, 95% CI: 0.40–0.90), feet and ankles (RR = 0.54, 95% CI: 0.35–0.83). Non-motorcycle boots were also associated with a reduced risk of injury compared to shoes or joggers (RR = 0.46, 95% CI: 0.28–0.75). No association between use of body armour and risk of fracture injuries was detected. A substantial proportion of motorcycle designed gloves (25.7%), jackets (29.7%) and pants (28.1%) were assessed to have failed due to material damage in the crash. Conclusions Motorcycle protective clothing is associated with reduced risk and severity of crash related injury and hospitalization, particularly when fitted with body armour. The proportion of clothing items that failed under crash conditions indicates a need for improved quality control. While mandating usage of protective clothing is not recommended, consideration could be given to providing incentives for usage of protective clothing, such as tax exemptions for safety gear, health insurance premium reductions and rebates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the shop scheduling problems such as flow-shop, job-shop, open-shop, mixed-shop, and group-shop, most research focuses on optimizing the makespan under static conditions and does not take into consideration dynamic disturbances such as machine breakdown and new job arrivals. We regard the shop scheduling problem under static conditions as the static shop scheduling problem, while the shop scheduling problem with dynamic disturbances as the dynamic shop scheduling problem. In this paper, we analyze the characteristics of the dynamic shop scheduling problem when machine breakdown and new job arrivals occur, and present a framework to model the dynamic shop scheduling problem as a static group-shop-type scheduling problem. Using the proposed framework, we apply a metaheuristic proposed for solving the static shop scheduling problem to a number of dynamic shop scheduling benchmark problems. The results show that the metaheuristic methodology which has been successfully applied to the static shop scheduling problems can also be applied to solve the dynamic shop scheduling problem efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hospital consists of a number of wards, units and departments that provide a variety of medical services and interact on a day-to-day basis. Nearly every department within a hospital schedules patients for the operating theatre (OT) and most wards receive patients from the OT following post-operative recovery. Because of the interrelationships between units, disruptions and cancellations within the OT can have a flow-on effect to the rest of the hospital. This often results in dissatisfied patients, nurses and doctors, escalating waiting lists, inefficient resource usage and undesirable waiting times. The objective of this study is to use Operational Research methodologies to enhance the performance of the operating theatre by improving elective patient planning using robust scheduling and improving the overall responsiveness to emergency patients by solving the disruption management and rescheduling problem. OT scheduling considers two types of patients: elective and emergency. Elective patients are selected from a waiting list and scheduled in advance based on resource availability and a set of objectives. This type of scheduling is referred to as ‘offline scheduling’. Disruptions to this schedule can occur for various reasons including variations in length of treatment, equipment restrictions or breakdown, unforeseen delays and the arrival of emergency patients, which may compete for resources. Emergency patients consist of acute patients requiring surgical intervention or in-patients whose conditions have deteriorated. These may or may not be urgent and are triaged accordingly. Most hospitals reserve theatres for emergency cases, but when these or other resources are unavailable, disruptions to the elective schedule result, such as delays in surgery start time, elective surgery cancellations or transfers to another institution. Scheduling of emergency patients and the handling of schedule disruptions is an ‘online’ process typically handled by OT staff. This means that decisions are made ‘on the spot’ in a ‘real-time’ environment. There are three key stages to this study: (1) Analyse the performance of the operating theatre department using simulation. Simulation is used as a decision support tool and involves changing system parameters and elective scheduling policies and observing the effect on the system’s performance measures; (2) Improve viability of elective schedules making offline schedules more robust to differences between expected treatment times and actual treatment times, using robust scheduling techniques. This will improve the access to care and the responsiveness to emergency patients; (3) Address the disruption management and rescheduling problem (which incorporates emergency arrivals) using innovative robust reactive scheduling techniques. The robust schedule will form the baseline schedule for the online robust reactive scheduling model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at signalized intersections. The objective of this study is to identify causal factors affecting the motorcycle crashes at both four-legged and T signalized intersections. Treating the data in time-series cross-section panels, this study explores different Hierarchical Poisson models and found that the model allowing autoregressive lag 1 dependent specification in the error term is the most suitable. Results show that the number of lanes at the four-legged signalized intersections significantly increases motorcycle crashes largely because of the higher exposure resulting from higher motorcycle accumulation at the stop line. Furthermore, the presence of a wide median and an uncontrolled left-turn lane at major roadways of four-legged intersections exacerbate this potential hazard. For T signalized intersections, the presence of exclusive right-turn lane at both major and minor roadways and an uncontrolled left-turn lane at major roadways of T intersections increases motorcycle crashes. Motorcycle crashes increase on high-speed roadways because they are more vulnerable and less likely to react in time during conflicts. The presence of red light cameras reduces motorcycle crashes significantly for both four-legged and T intersections. With the red-light camera, motorcycles are less exposed to conflicts because it is observed that they are more disciplined in queuing at the stop line and less likely to jump start at the start of green.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Singapore crash statistics show that motorcycles are involved in about 54% of crashes at intersections. Moreover, about 46% of fatal and 67% of injury motorcycle crashes occur at signalized intersections. The objective of this study is to identify causal factors affecting the motorcycle crashes at both four-legged and three-legged signalized intersections. Treating the data in time-series cross-section panels, this study explores different Hierarchical Poisson models and found that the model allowing autoregressive lag 1 dependent specification in the error term is the most suitable. Analysis of the results shows the number of lanes at the intersections significantly increases motorcycle crashes largely because of the higher exposure resulting from higher motorcycle accumulation at the stop line. Furthermore, the presence of a wide median at four-legged intersections and an exclusive right-turn lane and an uncontrolled left-turn lane at three-legged intersections exacerbate this potential hazard. Moreover, motorcycle crashes increase on high-speed roadways because of the vulnerability of the motorcyclists. The presence of red light cameras reduces motorcycle crashes significantly on the intersection roadways for both four-legged and three-legged intersections. With the red-light camera, motorcycles are less exposed to conflicts because it is observed that they are more disciplined in queuing at the stop line and less likely to jump start at the start of green.