830 resultados para Pneumatice Pressure, Distal Radius Fracture, Dynamic Loading, Fracture Healing
Resumo:
Data concerning the link between severity of abdominal aortic calcification (AAC) and fracture risk in postmenopausal women are discordant. This association may vary by skeletal site and duration of follow-up. Our aim was to assess the association between the AAC severity and fracture risk in older women over the short- and long term. This is a case-cohort study nested in a large multicenter prospective cohort study. The association between AAC and fracture was assessed using Odds Ratios (OR) and 95% confidence intervals (95%CI) for vertebral fractures and using Hazard Risks (HR) and 95%CI for non-vertebral and hip fractures. AAC severity was evaluated from lateral spine radiographs using Kauppila's semiquantitative score. Severe AAC (AAC score 5+) was associated with higher risk of vertebral fracture during 4 years of follow-up, after adjustment for confounders (age, BMI, walking, smoking, hip bone mineral density, prevalent vertebral fracture, systolic blood pressure, hormone replacement therapy) (OR=2.31, 95%CI: 1.24-4.30, p<0.01). In a similar model, severe AAC was associated with an increase in the hip fracture risk (HR=2.88, 95%CI: 1.00-8.36, p=0.05). AAC was not associated with the risk of any non-vertebral fracture. AAC was not associated with the fracture risk after 15 years of follow-up. In elderly women, severe AAC is associated with higher short-term risk of vertebral and hip fractures, but not with the long-term risk of these fractures. There is no association between AAC and risk of non-vertebral-non-hip fracture in older women. Our findings lend further support to the hypothesis that AAC and skeletal fragility are related.
Resumo:
New magnetometric, petrological, and geochemical data on basalts from the central Romanche Fracture Zone allow to classify these rocks into two groups. Igneous rocks from the active part of the fracture zone that have undergone transtension are referred to alkaline rocks. According to some indications, they are younger that oceanic tholeiites of the southern fault-line ridge, which were affected by elevated pressure in the past. These data indicate with a high probability that the Romanche Fracture Zone belongs to a rare group of magmatically active demarcation transform lines that separate large oceanic domains different in structural and geochemical features.
Resumo:
A collection of dredge samples from the Hunter Fracture Zone includes holocrystalline massive and cumulose basic and ultrabasic rocks and volcanites of the ophiolite complex: from basalts to rhyolites. The ultrabasic rocks are largely serpentinized harzburgites and lherzolites; their relict mineralogy is typical of peridotite considered to be the refractory residue of partial melting of the mantle. Cumulate textured ultramafic rocks probably are related to the cumulate gabbro and granodiorite rather than to the residual mantle material. The gabbroic rocks are dominantly cumulate textured Pl-Opx-Cpx±Ol gabbronorite and Pl-Cpx±Ol gabbros; the mineral features of these rocks are the result of their crystallization at moderate pressure (in a moderate level magma chamber). The massive Pl-Cpx±Ol gabbros are less common. Green and brown-green Ca-amphibole has partially or totally replaced the clinopyroxene in many samples. There is an overlap in mineral chemistry between the cumulate rocks and the Opx-Cpx-Pl volcanic rocks and boninites. It is interpreted as an indication that the cumulate rocks were co-genetic with Opx-Cpx-Pl volcanic rocks and that they both constitute remnants of an island arc volcanic-plutonic series. The petrologic evidence indicates that ophiolite gabbroic rocks were derived from an island-arc rather than from a mid-ocean ridge.
Resumo:
Many of the material models most frequently used for the numerical simulation of the behavior of concrete when subjected to high strain rates have been originally developed for the simulation of ballistic impact. Therefore, they are plasticity-based models in which the compressive behavior is modeled in a complex way, while their tensile failure criterion is of a rather simpler nature. As concrete elements usually fail in tensión when subjected to blast loading, available concrete material models for high strain rates may not represent accurately their real behavior. In this research work an experimental program of reinforced concrete fíat elements subjected to blast load is presented. Altogether four detonation tests are conducted, in which 12 slabs of two different concrete types are subjected to the same blast load. The results of the experimental program are then used for the development and adjustment of numerical tools needed in the modeling of concrete elements subjected to blast.
Resumo:
One of the common pathologies of brickwork masonry structural elements and walls is the cracking associated with the differential settlements and/or excessive deflections of the slabs along the life of the structure. The scarce capacity of the masonry in order to accompany the structural elements that surround it, such as floors, beams or foundations, in their movements makes the brickwork masonry to be an element that frequently presents this kind of problem. This problem is a fracture problem, where the wall is cracked under mixed mode fracture: tensile and shear stresses combination, under static loading. Consequently, it is necessary to advance in the simulation and prediction of brickwork masonry mechanical behaviour under tensile and shear loading. The quasi-brittle behaviour of the brickwork masonry can be studied using the cohesive crack model whose application to other quasibrittle materials like concrete has traditionally provided very satisfactory results.
Resumo:
Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.
Resumo:
The fracture behavior parallel to the fibers of an E-glass/epoxy unidirectional laminate was studied by means of three-point tests on notched beams. Selected tests were carried out within a scanning electron microscope to ascertain the damage and fracture micromechanisms upon loading. The mechanical behavior of the notched beam was simulated within the framework of the embedded cell model, in which the actual composite microstructure was resolved in front of the notch tip. In addition, matrix and interface properties were independently measured in situ using a nanoindentor. The numerical simulations very accurately predicted the macroscopic response of the composite as well as the damage development and crack growth in front of the notch tip, demonstrating the ability of the embedded cell approach to simulate the fracture behavior of heterogeneous materials. Finally, this methodology was exploited to ascertain the influence of matrix and interface properties on the intraply toughness.
Resumo:
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Resumo:
This paper presents seventy new experimental results from PMMA notched specimens tested under torsion at 60 C. The notch root radius ranges from 0.025 to 7.0 mm. At this temperature the non-linear effects previously observed on specimens of the same material tested at room temperature strongly reduce. The averaged value of the strain energy density over a control volume is used to assess the critical loads to failure. The radius of the control volume and the critical strain energy density are evaluated a priori by using in combination the mode III critical stress intensity factor from cracked-like specimens and the critical stress to failure detected from semicircular notches with a large notch root radius
Resumo:
BACKGROUND As an alternative to the modified Stoppa approach, the Pararectus approach is used clinically for treatment of acetabular fractures involving the anterior column. The current study assessed the surgical exposure and the options for instrumentation using both of these approaches. METHODS Surgical dissections were conducted on five human cadavers (all male, mean age 88 years (82-97)) using the modified Stoppa and the Pararectus approach, with the same skin incision length (10cm). Distal boundaries of the exposed bony surfaces were marked using a chisel. After removal of all soft-tissues, distances from the boundaries in the false and true pelvis were measured with reference to the pelvic brim. The exposed bone was coloured and calibrated digital images of each inner hemipelvis were taken. The amount of exposed surface using both approaches was assessed and represented as a percentage of the total bony surface of each hemipelvis. For instrumentation, a suprapectineal quadrilateral buttress plate was used. Screw lengths were documented, and three-dimensional CT reconstructions were performed to assess screw trajectories qualitatively. Wilcoxon's signed rank test for paired groups was used (level of significance: p<0.05). RESULTS After utilization of the Pararectus approach, the distances from the farthest boundaries of exposed bone towards the pelvic brim were significantly higher in the false but not the true pelvis, compared to the modified Stoppa approach. The percentage (mean±SD) of exposed bone accessible after utilizing the Pararectus approach was 42±8%, compared to 29±6% using the modified Stoppa (p=0.011). In cadavers exposed by the Pararectus approach, screws placed for posterior fixation and as a posterior column screw were longer by factor 1.8 and 2.1, respectively (p<0.05), and screws could be placed more posteromedial towards the posterior inferior iliac spine or in line with the posterior column directed towards the ischial tuberosity. CONCLUSION Compared to the modified Stoppa, the Pararectus approach facilitates a greater surgical access in the false pelvis, provides versatility for fracture fixation in the posterior pelvic ring and allows for the option to extend the approach without a new incision.
Resumo:
The fracture process involves converting potential energy from a strained body into surface energy, thermal energy, and the energy needed to create lattice defects. In dynamic fracture, energy is also initially converted into kinetic energy. This paper uses molecular dynamics (MD) to simulate brittle frcture in silicon and determine how energy is converted from potential energy (strain energy) into other forms.
Resumo:
Purpose. To determine the mechanisms predisposing penile fracture as well as the rate of long-term penile deformity and erectile and voiding functions. Methods. All fractures were repaired on an emergency basis via subcoronal incision and absorbable suture with simultaneous repair of eventual urethral lesion. Patients' status before fracture and voiding and erectile functions at long term were assessed by periodic follow-up and phone call. Detailed history included cause, symptoms, and single-question self-report of erectile and voiding functions. Results. Among the 44 suspicious cases, 42 (95.4%) were confirmed, mean age was 34.5 years (range: 18-60), mean follow-up 59.3 months (range 9-155). Half presented the classical triad of audible crack, detumescence, and pain. Heterosexual intercourse was the most common cause (28 patients, 66.7%), followed by penile manipulation (6 patients, 14.3%), and homosexual intercourse (4 patients, 9.5%). Woman on top was the most common heterosexual position (n = 14, 50%), followed by doggy style (n = 8, 28.6%). Four patients (9.5%) maintained the cause unclear. Six (14.3%) patients had urethral injury and two (4.8%) had erectile dysfunction, treated by penile prosthesis and PDE-5i. No patient showed urethral fistula, voiding deterioration, penile nodule/curve or pain. Conclusions. Woman on top was the potentially riskiest sexual position (50%). Immediate surgical treatment warrants long-term very low morbidity.
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
The purpose of this study was to correlate the pre-operative imaging, vascularity of the proximal pole, and histology of the proximal pole bone of established scaphoid fracture non-union. This was a prospective non-controlled experimental study. Patients were evaluated pre-operatively for necrosis of the proximal scaphoid fragment by radiography, computed tomography (CT) and magnetic resonance imaging (MRI). Vascular status of the proximal scaphoid was determined intra-operatively, demonstrating the presence or absence of puncate bone bleeding. Samples were harvested from the proximal scaphoid fragment and sent for pathological examination. We determined the association between the imaging and intra-operative examination and histological findings. We evaluated 19 male patients diagnosed with scaphoid nonunion. CT evaluation showed no correlation to scaphoid proximal fragment necrosis. MRI showed marked low signal intensity on T1-weighted images that confirmed the histological diagnosis of necrosis in the proximal scaphoid fragment in all patients. Intra-operative assessment showed that 90% of bones had absence of intra-operative puncate bone bleeding, which was confirmed necrosis by microscopic examination. In scaphoid nonunion MRI images with marked low signal intensity on T1-weighted images and the absence of intra-operative puncate bone bleeding are strong indicatives of osteonecrosis of the proximal fragment.
Resumo:
The aim of this study was to investigate the fracture strength of endodontically treated teeth restored with different posts and variable ferrule heights. Sixty freshly extracted human canines were treated endodontically and randomly assigned to 6 groups (n=10), being restored with custom-made cast post-and-core (CP0 and CP3 groups), prefabricated post and composite resin core (PF0 and PF3 groups), and composite resin (CR0 and CR3 groups). The CP0, PF0 and CR0 groups presented no ferrule and the CP3, PF3 and CR3 presented 3 mm of coronal structure. All teeth were restored with full metal crowns. The fracture strength was measured in a universal testing machine at 45o to the long axis of the tooth until failure. Data were analyzed statistically by 2-way ANOVA and Tukey's test (?=0.05). When the mean fracture strength values were compared (CP0 group - 820.20 N, CP3 group - 1179.12 N; PF0 group - 561.05 N; PF3 group - 906.79 N; CR0 group - 297.84 N; and CR3 group - 1135.15 N) there was statistically significant among the groups (p<0.05), except for the three groups with 3 mm of coronal remaining, which were similar to each other. The results of this study showed that the ferrule in crowns promoted significantly higher fracture strength in the endodontically treated teeth.