941 resultados para Percussion ensembles--Senegal
Resumo:
This paper presents a case report of a left mandibular second premolar with three canals and three different apical foramina. A 39-year-old male patient presented to our clinic with pain in the mandibular left second premolar. Initially, pain was caused by cold stimulus and later was spontaneously. The intraoral clinical examination revealed a fractured amalgam restoration with occlusal caries. Percussion and cold (Endo-Frost) tests were positive. The radiographic examination showed the presence of two roots. The probable diagnosis was an acute pulpitis. After access cavity, it was observed remaining roof of the pulp chamber and mild bleeding in the tooth lingual area, indicating the possible presence of a third canal. The endodontic treatment was completed in a single session using Root ZX apex locator and K3 NiTi rotary system with surgical diameter corresponding to a .02/45 file in the three canals and irrigation with 1% sodium hypochlorite. The canals were obtured with gutta-percha cones and Sealer 26 using the lateral condensation technique. After 1 year of follow-up, the tooth was asymptomatic and periapical repair was observed radiographically. Internal alterations should be considered during the endodontic treatment of mandibular second premolars. The correct diagnosis of these alterations by the analysis of preoperative radiographs can help the location of two or more canals, thereby avoiding root therapy failure.
Resumo:
Analysis at microenvironments, like single cells or in minute volumes (nL), is an area of great interest for analytical and biological sciences. Measurements at these experimental conditions demand analytical tools (microelectrodes) capable of monitoring with rapid response, good resolution and minimal perturbation of the system. The major drawbacks in producing these microscopic electrodes have been largely overcome, principally due to the development of new fabrication methods. In this review, these procedures are described with emphasis to those devoted to the construction of microelectrodes for application in microenvironments. Examples of our efforts to use these devices as effective electrochemical sensors are also addressed.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
In random matrix theory, the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists of removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristic of extreme values of an uncorrelated sequence, is obtained.
Resumo:
We report a study of dynamic effects detected in the time-resolved emission from quantum dot ensembles. Experimental procedures were developed to search for common behaviors found in quantum dot systems independently of their composition: three quantum dot samples were experimentally characterized. Systems with contrasting interdot coupling are compared and their sensitivity to the excitation energy is analyzed. Our experimental results are compared and contrasted with other results available in literature. The optical recombination time dependence on system parameters is derived and compared to the experimental findings. We discuss the effects of occupation of the ground state in both valence and conduction bands of semiconductor quantum dots in the dynamics of the system relaxation as well as the nonlinear effects.
Resumo:
Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.
Resumo:
The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Nino - Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.
Resumo:
The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained from ground-state density functionals. As a viability test, the method is applied to ground-state energies and various types of excited-state energies of atoms and ions from the He and the Li isoelectronic series. Results are compared to a variety of alternative DFT-based approaches to excited states, in particular time-dependent density-functional theory with exact and approximate potentials.
Resumo:
Tendon reflexes have been often used in studies of the human nervous system in health and disease. They have been investigated either in response to single tendon taps or to long duration vibrations. Tendon reflexes are described here in response to a high frequency vibration burst (3 cycles of a 100 Hz sine wave) applied to the Achilles tendon of standing subjects, either in quiet stance or during a forward leaning posture. The electromyogram from the soleus muscle usually showed three components separated by 10 ms which were interpreted as being three reflexes, each reflex induced by each of the three cycles in a burst. This result indicates that soleus tendon reflexes can respond in fast succession in a phasic manner when a brief high frequency vibration is applied to the Achilles tendon. This occurs in spite of possible depression of the la to motoneuron synapses and the long after hyperpolarization of the motoneurons. An interpretation of the results is that motoneurons from different subsets of the motoneuron pool respond to different cycles of the sinusoidal vibratory burst. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A technique to simulate the grand canonical ensembles of interacting Bose gases is presented. Results are generated for many temperatures by averaging over energy-weighted stochastic paths, each corresponding to a solution of coupled Gross-Pitaevskii equations with phase noise. The stochastic gauge method used relies on an off-diagonal coherent-state expansion, thus taking into account all quantum correlations. As an example, the second-order spatial correlation function and momentum distribution for an interacting 1D Bose gas are calculated.
Resumo:
We report absolute values for the radiative relaxation quantum yield of synthetic eumelanin as a function of excitation energy. These values were determined by correcting for pump beam attenuation and emission reabsorption in both eumelanin samples and fluorescein standards over a large range of concentrations. Our results confirm that eumelanins are capable of dissipating >99.9% of absorbed UV and visible radiation through nonradiative means. Furthermore, we have found that the radiative quantum yield of synthetic eumelanin is excitation energy dependent. This observation is supported by corrected emission spectra, which also show a clear dependence of both peak position and peak width on excitation energy. Our findings indicate that photoluminescence emission in eumelanins is derived from ensembles of small chemically distinct oligomeric units that can be selectively pumped. This hypothesis lends support to the theory that the basic structural unit of eumelanin is oligomeric rather than heteropolymeric.
Resumo:
2-(1-Aminoalkyl)oxazole-4 and 5-carboxylates are available, without detectable racemisation, by a sequence involving N-acylation of isoxazol-5(2H)one carboxylates with phthalimidoamino acids, photolysis of the acylated product, and hydrazinolysis. An application of the procedure to the synthesis of almazole A and B is described (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Almazoles A (1) and B (2) are formed in seven steps from phenylalanine without any racemization. The key step is the N-acylation of the isoxazol-5(2H)-one (5) with the phthalimide-protected amino acid, and photolysis of the product at 300 nm in acetone.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
P>Aim To present a 52-year-old male patient who complained of intense pain of short duration in the region of the left external ear and in the ipsilateral maxillary second molar that was relieved by blockade of the auriculotemporal nerve in the infratemporal fossa. Summary Extra- and intraoral physical examination revealed a trigger point that reproduced the symptoms upon finger pressure in the ipsilateral auriculotemporal nerve and in the outer auricular pavilion. The patient`s medical history was unremarkable. The maxillary left second molar tooth was not responsive to pulp sensitivity testing and there was no pain upon percussion or palpation of the buccal sulcus. Periapical radiographs revealed a satisfactory root filling in the maxillary left second molar. On the basis of the clinical signs and symptoms, the auriculotemporal was blocked with 0.5 mL 2% lidocaine and 0.5 mL of a suspension containing dexamethasone acetate (8 mg mL(-1)) and dexamethasone disodium sulfate (2 mg mL(-1)), with full remission of pain 6 months later. The diagnosis was auriculotemporal neuralgia. Key learning point Auriculotemporal neuralgia should be considered as a possible cause of nonodontogenic toothache and thus included in the differential diagnoses. The blockade of the auriculotemporal nerve in the infratemporal fossa is diagnostic and therapeutic. It can be achieved with a solution of lidocaine and dexamethasone.